

TECHNICAL NOTES
Using Plugins and Parsers with BrightAuthor

BrightSign, LLC. 16795 Lark Ave., Suite 200 Los Gatos, CA 95032
408-852-9263 | www.brightsign.biz

Technical Notes 1

INTRODUCTION
This tech note describes how to use two advanced BrightAuthor features:
custom autorun plugins and parser scripts. These instructions assume a certain
level of familiarity with BrightScript and coding practices. This is not a
comprehensive guide to writing custom scripts for BrightAuthor; rather, it is
meant to provide a general outline and best practices for writing those scripts.

Custom Autorun Plugins
Custom plug-ins allow you to add script extensions to a standard presentation autorun.
Plugins have two primary benefits over custom autoruns: They can be easily inserted into
multiple presentations, including newer and older versions of the same presentation; and they
are not dependant on a certain autorun or firmware version, greatly reducing the complexity
involved in updating custom BrightScript deployments.
Note: Custom plugins are only available in BrightAuthor 3.7 or later.

To designate one or more custom plugins for a BrightAuthor presentation, navigate to File >
Presentation Properties > Autorun. Click the Add Script Plugin button, give the plugin a
name, and click the Browse button to locate and select a .brs file to use as a plugin.

Plug-in scripts must include an initialization function in the form of
<plugin_name>_Initialize. This initialization function is passed three parameters:

• msgPort as Object
• userVariables as Object
• o as Object: This is the bsp associative array from the autorun. It is required for the

initialization function to return an associative array.

To process events, the plugin script must provide a ProcessEvent function that is a member
of the associative array returned by the initialization function described above. The

Technical Notes 2

ProcessEvent function is given a single event object. The function then returns a Boolean
indicating whether or not the autorun should continue processing the event object: The function will
return True if it handles the event and the standard autorun should not continue processing the event.

The associative array that defines the object must also include an objectName entry that defines
the name of the object.

The following is an example of a script plugin file named “pizza.brs”:

Function pizza_Initialize(msgPort As Object, userVariables As Object, o As

Object)

 print "pizza_Initialize - entry"

 print "type of msgPort is ";type(msgPort)

 print "type of userVariables is ";type(userVariables)

 PizzaBuilder = newPizzaBuilder(msgPort, userVariables)

 return PizzaBuilder

End Function

Function newPizzaBuilder(msgPort As Object, userVariables As Object)

 PizzaBuilder = { }

 PizzaBuilder.msgPort = msgPort

 PizzaBuilder.userVariables = userVariables

 PizzaBuilder.objectName = "PizzaBuilder_object"

 PizzaBuilder.ProcessEvent = pizza_ProcessEvent

Technical Notes 3

 return PizzaBuilder

End Function

Function pizza_ProcessEvent(event As Object)

 print "pizza_ProcessEvent - entry"

 print "type of m is ";type(m)

 print "type of event is ";type(event)

' swallows timer events - telling the autorun not to process them

 if type(event)= "roTimerEvent" then

 return true

 else

 return false

 endif

End Function

Receiving a Plugin Message
The following example code shows how to write a script that receives a Plugin Message Command
from the autorun. This code listens for a message sent to the plugin named “Pizza” and then prints
the message:

Function pizza_ProcessEvent(event As Object)

 print "pizza_ProcessEvent - entry"

 print "type of m is ";type(m)

 print "type of event is ";type(event)

Technical Notes 4

 if type(event) = "roAssociativeArray" then

 if type(event["EventType"]) = "roString"

 if event["EventType"] = "SEND_PLUGIN_MESSAGE" then

 if event["PluginName"] = "Pizza" then

 pluginMessage$ = event["PluginMessage"]

 print "received pluginMessage ";pluginMessage$

 return true

 endif

 endif

 endif

 endif

 return false

End Function

Sending a Plugin Message
The following example code shows how to write a script that sends a message string to trigger a
Plugin Message event.

print "pizza_ProcessEvent - entry"

 print "type of m is ";type(m)

 print "type of event is ";type(event)

 if type(event) = "roTimer" then

 pluginMessageCmd = CreateObject("roAssociativeArray")

 pluginMessageCmd["EventType"] = "EVENT_PLUGIN_MESSAGE"

 pluginMessageCmd["PluginName"] = "Pizza"

 pluginMessageCmd["PluginMessage"] = "toppings"

Technical Notes 5

 m.msgPort.PostMessage(pluginMessageCmd)

 return true

 endif

 return false

End Function

Parser Scripts
Parser scripts allow you to manipulate data sets from incoming RSS feeds. You can create parser
scripts for a wide array of system and presentation functions. You can designate a parser for an RSS
feed by navigating to File > Presentation Properties > Data Feeds in BrightAuthor.
Note: The parser file must have a .brs extension.

The following parameters can be used with the parser subroutine:

• xmlFileName$: The name of the XML file. This information is provided by the autorun.
• itemsByIndex: An array of the descriptions. The script should fill in this array if the Live Text

object is using the “item index” to display items from this feed.
• itemsByTitle: An associative array of titles, descriptions. The script should fill in this array if

a Live Text object is using the “item title” to display items from this feed.
• userVariables: An associative array of current User Variables (which are provided by the

autorun). This is provided in case you want to analyze or modify the User Variables.

The following piece of example code can be used to parse RSS text:

 xml = CreateObject("roXMLElement")

 if not xml.Parse(ReadAsciiFile(xmlFileName$)) then

 print "xml read failed"

 else

 if type(xml.channel.item) = "roXMLList" then

Technical Notes 6

 index% = 0

 for each itemXML in xml.channel.item

 itemsByIndex.push(stri(index%) + " - " +
itemXML.description.GetText())

 index% = index% + 1

 next

 endif

 endif

end Sub

