

BRIGHTSCRIPT REFERENCE
MANUAL
BrightScript version 3.0
Compatible with firmware versions 3.8.x and later

BrightSign, LLC. 16780 Lark Ave., Suite B Los Gatos, CA 95032 | 408-852-9263 | www.brightsign.biz

TABLE OF CONTENTS

Introduction .. 1

BrightScript Characteristics ... 1
BrightScript Operation ... 1

Variables, Literals, and Types ... 3

Identifiers ... 3
Types ... 3
Type Declaration Characters ... 6
Literals (Constants) ... 6
Array Literals ... 7
Assoiative Array Literals .. 7
Invalid Object Return ... 8
Dynamic Typing for Numbers .. 8
Number Type Conversion .. 8
Type Conversion and Accuracy ... 9

Operators .. 10

Logical and Bitwise Operators ... 10
Dot Operator .. 11
Array and Function-Call Operators .. 12

Equals Operator .. 13

Objects, Interfaces, and Language Integration ... 15

BrightScript Objects ... 15
Wrapper Objects .. 15
Interfaces ... 17
Statement and Interface Integration .. 17
XML Support in BrightScript .. 18

Garbage Collection .. 24

Events ... 25

Threading Model .. 27

Scope .. 28

Intrinsic Objects ... 29

Program Statements .. 30

LIBRARY ... 31
DIM .. 32
Assignment (“=”) .. 33
END ... 34
STOP ... 34
GOTO .. 34

RETURN .. 35
REM... 35
PRINT .. 35
FOR / END FOR .. 38
FOR EACH IN / END FOR .. 39
WHILE / EXIT WHILE .. 40
IF / THEN / ELSE .. 40
Block IF / ELSEIF / THEN / ENDIF .. 41
Function() As Type / End Function .. 43

Built-In Functions ... 48

Type() .. 48
GetGlobalAA() ... 48
Rnd().. 48
Box() .. 49
Run().. 49
Eval() ... 51
GetLastRunCompileError() .. 51
GetLastRunRuntimeError() .. 53

BrightScript Core Library Extension .. 56

BrightScript Debug Console ... 57

Console Commands .. 57

Appendix A – BrightScript Versions .. 59

Appendix B – Reserved Words ... 61

Appendix C – Example Script ... 62

1

INTRODUCTION
BrightScript is a powerful scripting language for building media and networked applications for
embedded devices. This language features integrated support for a lightweight library of BrightScript
objects, which are used to expose the API of the platform (device) that is running BrightScript. The
BrightScript language connects generalized script functionality with underlying components for
networking, media playback, UI screens, and interactive interfaces; BrightScript is optimized for
generating user-friendly applications with minimal programmer effort.

This reference manual specifies the syntax of BrightScript. For a detailed listing of BrightScript objects,
refer to the BrightScript Object Reference Manual. This manual is intended as a reference for those who
have some level of programming experience—it is not a tutorial for those who are new to programming.

For a quick flavor of BrightScript code, see Appendix C for a game of "snake" created using BrightScript.

BrightScript Characteristics
The following are some general characteristics of BrightScript, as compared to other common scripting languages:

• BrightScript is not case sensitive.
• Statement syntax is similar to Python, Basic, Ruby, and Lua (and dissimilar to C).
• Like JavaScript and Lua, objects and named data-entry structures are associative arrays.
• BrightScript supports dynamic typing (like JavaScript) and declared types (like C and Java).
• Similar to .Net and Java, BrightScript uses "interfaces" and "components" (i.e. objects).

BrightScript Operation
BrightScript code is compiled into bytecode that is run by an interpreter. The compilation step occurs every time a script is
loaded and run. Similar to JavaScript, there is no separate compilation step that results in a saved binary file.

http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting�

2

BrightScript and its component architecture are written in 100% C for speed, efficiency, and portability. Since many
embedded processors do not have floating-point units, BrightScript makes extensive use of the "integer" type. Unlike
some languages (including JavaScript), BrightScript only uses floating point numbers when necessary.

3

VARIABLES, LITERALS, AND TYPES

Identifiers
Identifiers are names of variables, functions, and labels. They also apply to BrightScript object methods (i.e. functions)
and interfaces (which appear after a "." Dot Operator). Identifiers have the following rules:

• Must start with an alphabetic character (a-z).
• May consist of alphabetic characters, numbers, or the underscore symbol ("_").
• Are not case sensitive.
• May be of any length.
• May not be a reserved word (see the Appendix B for a list of reserved words).
• (variables only) May end with an optional type declaration ("$" for a string, "%" for an integer, "!" for a float, "#" for

a double).

Examples

 a

 boy5

 super_man$

 42%

Types
BrightScript supports both dynamic typing and declared types. This means that every value has a type determined at
runtime, but variables can also be instructed to always contain a value of a specified type. If a value is assigned to a
variable that has a specified type, the type of the value will be converted to the variable type if possible. If conversion is
impossible, a runtime error will occur.

4

A variable that does not end in a type declaration may change its type dynamically. For example, the statement a=4 will
create an integer, while a following statement specifying that a="hello" will change the type of the variable a to a string.

BrightScript supports the following types:

• Boolean: True or False
• Integer: A 32-bit signed integer number
• Float: The smallest floating point number format supported by either the hardware or software
• Double: The largest floating point number format supported by either the hardware or software. Although Double is

an intrinsically understood type, it is implemented internally with the roIntrinsicDouble object. As a general rule, this
type is hidden from developers.

• String: A sequence of ASCII (not UTF-8) characters. BrightScript uses two intrinsic string states:
o Constant strings: A statement such as s="astring" will create an intrinsic constant string.
o roString instances: Once a string is used in an expression, it becomes an roString instance. For example,

the statement s = s + "bstring" will cause the intrinsic string s to convert to an roString instance. If this
is followed by the statement s2 = s, the s2 value will be a reference to s, not a copy of it. The behavior of
reference counting strings is new to BrightScript version 3.0.

• Object: A reference to a BrightScript object (i.e. a native component). Note that the type() function will not return
"Object" but the type of object instead (e.g. roList, roVideoPlayer). Also note that there is no separate type for
intrinsic BrightScript Objects. All intrinsic BrightScript Objects are built on the roAssociativeArray object type.

• Interface: An interface in a BrightScript Object. If a "." Dot Operator is used on an interface type, the member must
be static (since there is no object context).

• Invalid: A type that can have only one value: Invalid. This type is returned in various instances when no other
type is valid (for example, when indexing an array that has never been sent).

Example
The following are examples of different types. The ? statement is a shortcut for print, while the type() function returns
a string that identifies the type of the passed expression.

5

BrightScript Micro Debugger.

Enter any BrightScript statement, debug commands, or HELP.

BrightScript> ?type(1)

Integer

BrightScript> ?type(1.0)

Float

BrightScript> ?type("hello")

String

BrightScript> ?type(CreateObject("roList"))

roList

BrightScript> ?type(1%)

Integer

BrightScript> b!=1

BrightScript> ?type(b!)

Float

BrightScript> c$="hello"

BrightScript> ?type(c$)

String

BrightScript> d="hello again"

6

BrightScript> ?type(d)

String

BrightScript> d=1

BrightScript> ?type(d)

Integer

BrightScript> d=1.0

BrightScript> ?type(d)

Float

Type Declaration Characters
A type declaration may be used at the end of a variable or literal to fix its type. Variables with the same identifier but
separate types are separate variables: For example, defining a$ and a% would create two independent variables.

Character Type Examples
$ String A$, ZZ$
% Integer A1%, SUM%
! Single-Precision (Float) B!, N1!
Double-Precision (Double) A#, 1/3#, 2#

Literals (Constants)
The following are valid literal types:

• Type Boolean: Either True or False
• Type Invalid: Invalid only
• Type String: A string in quotes (e.g. "This is a string")
• Type Integer: An integer in hex (e.g. HFF) or decimal (e.g. 255) format

7

• Type Float: A number with a decimal (e.g. 2.01), in scientific notation (e.g. 1.23456E+30), or with a Float type
designator (e.g. 2!)

• Type Double: A number in scientific notation containing a double-precision exponent symbol (e.g. 1.23456789D-
12) or with a Double type declaration (e.g. 2.3#)

• Type Function: Similar to variable formatting (e.g. MyFunction)
• Type Integer: LINE_NUM – The current source line number

Array Literals
The Array Operator ([])can be used to declare an array. It can contain literals (constants) or expressions.

Myarray = []

Myarray = [1, 2, 3]

Myarray = [x+5, true, 1<>2, ["a","b"]]

Assoiative Array Literals
The Associative Array Operator ({}) can be used to define an associative array. It can contain literals (constants) or
expressions.

aa={ }

aa={key1:"value", key2: 55, key3: 5+3 }

Arrays and associative arrays can also be defined with the following format:

 aa = {

 Myfunc1: aFunction

 Myval1 : "the value"

}

8

Invalid Object Return
Many methods (i.e. functions) that return objects can also return Invalid (for example, in cases where there is no object to
return). In these cases, the variable accepting the result must be dynamically typed since it may be assigned either type.

Example: The following code will return a type mismatch: a$ is a string that has a string type declaration, and thus it
cannot contain Invalid.

l=[]

a$=l.pop()

Dynamic Typing for Numbers
The following rules determine how integers, doubles, and floats are dynamically typed:

1. If a constant contains 10 or more digits, or if D is used in the exponent, the number is Double. Adding a # type
declaration also forces a constant to be a Double.

2. If the number is not double precision and it contains a decimal point, the number is a Float. Expressing a number in
scientific notation using the E exponent also forces a constant to be a Float.

3. If neither of the above conditions is true for a constant, the number is an Integer.

Number Type Conversion
When operations are performed on one or two numbers, the result must be typed as an Integer, Float, or Double. When
an addition (+), subtraction (-), or multiplication (*) operation is performed, the result will have the same degree of
precision as the most precise operand: For example, multiplying an Integer by a Double will return a number that is a
Double.

Only when both operands are Integers will the result be an Integer number. If the result of two Integer operands is outside
the 32-bit range, the operation and return will be carried out with Doubles.

9

Division (/) operates using the same rules as above, except that it can never be carried out at the Integer level: When both
operators are Integers, the operation and return will be carried out with Floats.

Comparison operations (e.g. <, >, =) will convert the numbers to the same type before they are compared. The less
precise type will always be converted to the more precise type.

Type Conversion and Accuracy
When a Float or Double number is converted to the Integer type, it is rounded down: The largest integer that is not greater
than the number is used. This also happens when the INT function is called on a number.

When a Double number is converted to the Float type, it is 4/5 rounded: The least significant digit is rounded up if the
fractional part is >=5 (otherwise, it is left unchanged).

When a Float number is converted to the Double type, only the seven most significant digits will be accurate.

10

OPERATORS
Operations in the innermost level of parentheses are performed first. Evaluation then proceeds according to the
precedence in the following table. Operations on the same precedence are left-associative, except for exponentiation,
which is right-associative.

 Description Symbol(s)
1. Function Calls or Parentheses ()

2. Array Operators . , []
3. Exponentiation ^

4. Negation –, +
5. Multiplication, Division, Modulus *, /, MOD
6. Addition, Subtraction +, -
7. Comparison <, >, = , <>, <=, >=
8. Logical Negation NOT

9. Logical Conjunction AND

10. Logical OR OR

String Operators
The following operators work with strings: <, >, =, <>, <=, >=, +

Function References
The = and <> operators work on variables that contain function references and function literals.

Logical and Bitwise Operators
The AND, OR, and NOT operators are used for logical (Boolean) comparisons if the arguments for these operators are
Boolean:

11

if a=c and not(b>40) then print "success"

On the other hand, if the arguments for these operators are numeric, they will perform bitwise operations:

 x = 1 and 2 ' x is zero

 y = true and false ' y is false

When the AND or OR operator is used for a logical operation, only the necessary amount of the expression is executed.
For example, the first statement below will print "True", while the second statement will cause a runtime error (because
"invalid" is not a valid operand for OR):

print true or invalid

print false or invalid

Dot Operator
The "." Dot Operator can be used on any BrightScript object. It also has special meaning when used on an
roAssociativeArray object, as well as roXMLElement and roXMLList objects. When used on a BrightScript Object, it refers
to an interface or method associated with that object. In the following example, IfInt refers to the interface and
SetInt() refers to a method that is part of that interface:

i=CreateObject("roInt")

i.ifInt.SetInt(5)

i.SetInt(5)

Every object method is part of an interface. However, specifying the interface with the "." Dot Operator is optional. If the
interface is omitted, as in the third line of the above example, each interface that is part of the object will be searched for
the specified member. If there is a naming conflict (i.e. a method with the same name appears in two interfaces), then the
interface should be specified.

12

Associative Arrays
When the "." Dot Operator is used on an Associative Array, it is the same as calling the Lookup() or AddReplace()
methods, which are member functions of the roAssociativeArray object:

aa=CreateObject("roAssociativeArray")

aa.newkey="the value"

print aa.newkey

Note that the parameters of the "." Dot Operator are set at compile time; they are not dynamic, unlike the Lookup() and
AddReplace() methods.

The "." Dot Operator is always case insensitive: For example, the following statement will create the entry "newkey" in the
associative array:

aa.NewKey=55

Array and Function-Call Operators
The [] operator is used to access an array (i.e. any BrightScript object that has an ifArray interface, such as roArray and
roList objects). It can also be used to access an associative array. The [] operator takes expressions that are evaluated
at runtime, while the "." Dot Operator takes identifiers at compile time.

The () operator can be used to call a function. When used on a function literal (or variable containing a function
reference), that function will be called.

Example: This code snippet demstrates the use of both array and function-call operators.

aa=CreateObject("roAssociativeArray")

aa["newkey"]="the value"

print aa["newkey"]

13

array=CreateObject("roArray", 10, true)

array[2]="two"

print array[2]

fivevar=five

print fivevar()

array[1]=fivevar

print array[1]() ' print 5

function five() As Integer

 return 5

end function

Array Dimensions
Arrays in BrightScript are one dimensional. Multi-dimensional arrays are implemented as arrays of arrays. The []
operator will automatically map multi-dimensionality. For example, the following two fetching expressions are the same:

dim array[5,5,5]

item = array[1][2][3]

item = array[1,2,3]

Note: If a multi-dimensional array grows beyond its hint size, the new entries are not automatically set to roArray.

Equals Operator
The = operator is used for both assignment and comparison:

14

a=5

If a=5 then print "a is 5"

Unlike the C language, BrightScript does not support use of the = assignment operator inside an expression. This is
meant to eliminate a common class of bugs caused by confusion between assignment and comparison.

When assignment occurs, intrinsic types are copied, while BrightScript Objects are reference counted.

15

OBJECTS, INTERFACES, AND LANGUAGE INTEGRATION

BrightScript Objects
Though BrightScript operates independently of its object architecture and library, they are both required for programming
BrightScript applications. The API of a BrightSign platform is exposed to BrightScript as a library objects: Platforms must
register a new BrightScript object to expose some part of its API.

BrightScript objects are written in C (or a compatible language such as C++), and are robust against version changes:
Scripts are generally backwards compatible with objects that have undergone revisions.

BrightScript objects keep a reference count; they delete themselves when the reference count reaches zero.

Wrapper Objects
All intrinsic BrightScript types (Boolean, Integer, Float, Double, String, and Invalid) have object equivalents. If one of these
intrinsic types is passed to a function that expects an object, the appropriate wrapper object will be created, assigned the
correct value, and passed to the function (this is sometimes referred to as "autoboxing"): This allows, for example, roArray
objects to store values (e.g. integers and strings) as well as objects.

Any expression that expects one of the above types will work with the corresponding wrapper object as well: roBoolean,
roInt, roFloat, roDouble, roString.

Example: The following examples illustrate how wrapper objects work.

Print 5.tostr()+"th"

Print "5".toint()+5

-5.tostr() 'This will cause an error. Instead, use the following:

16

(-5).tostr()

if type(5.tostr())<> "String" then stop

if (-5).tostr()<>"-5" then stop

if (1+2).tostr()<>"3" then stop

i=-55

if i.tostr()<>"-55" then stop

if 100%.tostr()<>"100" then stop

if (-100%).tostr()<>"-100" then stop

y%=10

if y%.tostr()<>"10" then stop

if "5".toint()<>5 or type("5".toint())<>"Integer" then stop

if "5".tofloat()<>5.0 or type("5".tofloat())<>"Float" then stop

fs="-1.1"

if fs.tofloat()<>-1.1 or fs.toint()<>-1 then stop

if "01234567".left(3)<>"012" then stop

if "01234567".right(4)<>"4567" then stop

if "01234567".mid(3)<>"34567" then stop

if "01234567".mid(3,1)<>"3" then stop

if "01234567".instr("56")<>5 then stop

if "01234567".instr(6,"56")<>-1 then stop

if "01234567".instr(0,"0")<>0 then stop

17

Interfaces
Interfaces in BrightScript operate similarly to Java or Microsoft COM: An interface is a known set of member functions that
implement a set of logic. In some ways, an interface is similar to a virtual base class in C++; any script or program that is
compatible with C can use an object interface without regards to the type of object it belongs to: For example, the
roSerialPort object, which controls the standard serial interface (RS-232), implements three interfaces: ifSerialControl,
ifStreamReceive, and ifStreamSend. Since the print statement sends its output to any object that has an ifStreamSend
interface, it works with the roSerialPort object, as well as any other object with the ifStreamSend interface.

Statement and Interface Integration
Some BrightScript statements have integrated functionality with interfaces. This section describes how to use statements
with interfaces.

PRINT
Using the PRINT statement in the following format will print into an object that has an ifStreamSend interface, including
the roTextField and roSerialPort objects:

print #object, "string"

If the expression being printed evaluates to an object with an ifEnum interface, the PRINT statement will print every item
that can be enumerated.

In addition to printing the values of intrinsic types, the PRINT statement can also be used to print any object that exposes
one of the following interfaces: ifString, ifInt, ifFloat.

WAIT
The WAIT statement can work in conjunction with any object that has an ifMessagePort interface.

18

Expression Parsing
Any expression that expects a certain type of variable—including Integer, Float, Double, Boolean, or String—can accept
an object with an interface equivalent of that type: ifInt, ifFloat, ifDouble, ifBoolean, ifString.

Array Operator
The array "[]" operator works with any object that has an ifArray or ifAssociativeArray interface, including arrays,
associative arrays, and lists.

Member Access Operator
The member access operator (i.e. Dot Operator) works with any object that has an ifAssociativeArray interface. It also
works with any object when used to call a member function (i.e. method). It also has special meaning when used on an
roXMLElement or roXMLList object.

XML Support in BrightScript
BrightScript provides XML support with two BrightScript objects and a set of dedicated language features:

roXMLElement
This object provides support for parsing, generating, and containing XML.

roXMLList
This object is used to contain a list of roXMLElement instances.

Dot operator
The "." Dot Operator has the following features when used with XML objects:

• When used with an roXMLElement instance, the "." Dot Operator returns an roXMLList instance of the child tags
that match the dot operand. If no tags match the operand, an empty list is returned.

• When applied to an roXMLList instance, the "." Dot Operator aggregates the results of performing the above
operation on each roXMLElement in the list.

19

• When applied to XML, which is technically case sensitive, the "." Dot Operator is still case insensitive. If you wish to
perform a case-sensitive XML operation, use the member functions of the roXMLElement/roXMLList objects.

Attribute Operator
The “@” Attribute Operator can be used with an roXMLElement instance to return a named attribute. Though XML is case
sensitive, the Attribute Operator is always case insensitive. If the Attribute Operator is used with an roXMLList instance, it
will only return a value if that list contains exactly one element.

Examples

<?xml version="1.0" encoding="utf-8" ?>

<rsp stat="ok">

 <photos page="1" pages="5" perpage="100" total="500">

 <photo id="3131875696" owner="21963906@N06" secret="f248c84625" server="3125"

 farm="4" title="VNY 16R" ispublic="1" isfriend="0" isfamily="0" />

 <photo id="3131137552" owner="8979045@N07" secret="b22cfde7c4" server="3078"

 farm="4" title="hoot" ispublic="1" isfriend="0" isfamily="0" />

 <photo id="3131040291" owner="27651538@N06" secret="ae25ff3942" server="3286"

 farm="4" title="172 • 365 :: Someone once told me..." ispublic="1" isfriend="0"

 />

 </photos>

</rsp>

Given the XML in the above example.xml file, then the following code will return an roXMLList instance with three entries:

rsp=CreateObject("roXMLElement")

rsp.Parse(ReadAsciiFile("example.xml"))

? rsp.photos.photo

20

The following will return an roXMLElement reference to the first photo (id="3131875696"):

? rsp.photos.photo[0]

The following will return an roXMLList reference containing the <photos> tag:

? rsp.photos

The following will return the string “100”:

rsp.photos@perpage

You can use the roXMLElement.GetText() method to return an element’s text: For example, if the variable <booklist>
contains the element <book lang=eng>The Dawn of Man</book>, then the following code will print the string “The
Dawn of Man”.

Print booklist.book.gettext()

Alternatively, using the Attribute Operator will print the string “eng”.

print booklist.book@lang

Example (Flikr code clip)

REM

REM Interestingness

REM pass an (optional) page of value 1 - 5 to get 100 photos

REM starting at 0/100/200/300/400

REM

REM returns a list of "Interestingness" photos with 100 entries

REM

21

Function GetInterestingnessPhotoList(http as Object, page=1 As Integer) As Object

 print "page=";page

http.SetUrl("http://api.flickr.com/services/rest/?method=flickr.interestingness.getList&a

pi_key=YOURKEYGOESHERE&page="+mid(stri(page),2))

 xml=http.GetToString()

 rsp=CreateObject("roXMLElement")

 if not rsp.Parse(xml) then stop

 return helperPhotoListFromXML(http, rsp.photos.photo)

'rsp.GetBody().Peek().GetBody())

End Function

Function helperPhotoListFromXML(http As Object, xmllist As Object,

 owner=invalid As dynamic) As Object

 photolist=CreateObject("roList")

 for each photo in xmllist

 photolist.Push(newPhotoFromXML(http, photo, owner))

 end for

 return photolist

22

End Function

REM

REM newPhotoFromXML

REM

REM Takes an roXMLElement Object that is an <photo> ... </photo>

REM Returns an brs object of type Photo

REM photo.GetTitle()

REM photo.GetID()

REM photo.GetURL()

REM photo.GetOwner()

REM

Function newPhotoFromXML(http As Object, xml As Object, owner As dynamic) As Object

 photo = CreateObject("roAssociativeArray")

 photo.http=http

 photo.xml=xml

 photo.owner=owner

 photo.GetTitle=function():return m.xml@title:end function

 photo.GetID=function():return m.xml@id:end function

 photo.GetOwner=pGetOwner

 photo.GetURL=pGetURL

 return photo

End Function

Function pGetOwner() As String

23

 if m.owner<>invalid return m.owner

 return m.xml@owner

End Function

Function pGetURL() As String

 a=m.xml.GetAttributes()

 url="http://farm"+a.farm+".static.flickr.com/"+a.server+"/"+a.id+"_"+a.secret+".jpg

"

 return url

End Function

24

GARBAGE COLLECTION
BrightScript automatically frees strings when they are no longer used, and it will free objects when their reference count
goes to zero. This is carried out at the time the object or string is no longer used; there is no background garbage
collection task. The result is a predictable garbage-collection process, with no unexpected stalls in execution.

Objects may enter a state of circular reference counting: Objects that reference each other will never reach a reference
count of zero and will need to be freed manually using the RunGarbageCollector() method. This method is useful
when destroying old presentation data structures and creating a new presentation.

25

EVENTS
Events in BrightScript center around an event loop and the roMessagePort object. Most BrightScript objects can post to a
message port in the form of an event object: For example, the roTimer object posts events of the type roTimerEvent.

Example: The following script sets the destination message port using the SetPort() method, waits for an event in the
form of an roGpioButton object, and then processes the event.

print "BrightSign Button-LED Test Running"

p = CreateObject("roMessagePort")

gpio = CreateObject("roGpioControlPort")

gpio.SetPort(p)

while true

 msg=wait(0, p)

 if type(msg)="roGpioButton" then

 butn = msg.GetInt()

 if butn <=5 then

 gpio.SetOutputState(butn+17,1)

 print "Button Pressed: ";butn

 sleep(500)

 gpio.SetOutputState(butn+17,0)

 end if

 end if

 REM ignore buttons pressed while flashing led above

 while p.GetMessage()<>invalid

 end while

26

end while

Note that these two lines,

while true

 msg=wait(0, p)

Can be replaced using the following (and substituting end while with end for):

For each msg in p

27

THREADING MODEL
BrightScript runs in a single thread. In general, BrightScript object calls are synchronous if they return quickly, and
asynchronous if they take a substantial amount of time to complete. For example, methods belonging to the roArray object
are all synchronous, while the Play() method that is part of the roVideoPlayer object will return immediately (it is
asynchronous). As a video plays, the roVideoPlayer object will post messages to the message port, indicating such
events as “media playback finished” or “frame x reached”.

The object implementer decides whether a BrightScript object should launch a background thread to perform a
synchronous operation. Sometimes, an object will feature synchronous and asynchronous versions of the same method.

This threading model ensures that the script writer does not have to deal with mutexes and other synchronization objects.
The script is always single threaded, and the message port is polled or waited on to receive events into the thread. On the
other hand, those implementing BrightScript objects have to consider threading issues: For example, the roList and
roMessagePort objects are thread-safe internally, allowing them to be used by multiple threads.

28

SCOPE
BrightScript uses the following scoping rules:

• Global variables are not supported; however, there is a single hard-coded global variable (“global”) that is an
interface to the global BrightScript component, which contains all global library functions.

• Functions declared with the Function statement are global in scope; however, if the function is anonymous, it will
still be local in scope.

• Local variables exist within the function scope. If a function calls another function, that new function has its own
scope.

• Labels exist within the function scope.
• Block statements such as For / End For and While / End While do not create a separate scope.

29

INTRINSIC OBJECTS
In general, this manual uses the term “object” to refer to “BrightScript components”, which are C or C++ components with
interfaces and member functions that BrightScript uses directly. With the exception of some core objects (roArray,
roAssociativeArray, roInt, roMessagePort, etc.), BrightScript objects are platform specific.

You can create intrinsic objects in BrightScript, but these objects are not BrightScript components. There is currently no
way to create a BrightScript component in BrightScript or to create intrinsic objects that have interfaces (intrinsic objects
can only contain member functions, properties, and other objects).

A BrightScript object is simply an roAssociativeArray: When a member function is called from an associative array, a “this”
pointer is set to “m”, and “m” is accessible inside the Function code to access object keys. A “constructor” in BrightScript
is simply a normal function at a global scope that creates an roAssociativeArray instance and fills in its member functions
and properties.

See the “snake” game in the appendix for examples of creating intrinsic objects.

30

PROGRAM STATEMENTS
BrightScript supports the following statement types. The syntax of each statement is documented in more detail later in
this chapter.
Note: BrightScript is not case sensitive.

• Library

• Dim

• = (assignment)
• End

• Stop

• Goto

• Rem (or ')
• Print

• For / To / End For / Step / Exit For

• For Each / In / End For / Exit For

• While / End While / Exit While

• If / Then / Else If / Else / End If

• Function / End Function / As / Return

Example

Function Main() As Void

 dim cavemen[10]

 cavemen.push("fred")

 cavemen.push("barney")

 cavemen.push("wilma")

31

 cavemen.push("betty")

 for each caveman in cavemen

 print caveman

 end for

End Function

Statement Syntax
Each line may contain a single statement. However, a colon (:) may be used to separate multiple statements on a single
line.

Example:

myname = "fred"

if myname="fred" then yourname = "barney":print yourname

LIBRARY
LIBRARY Filename.brs

BrightScript 3.0 allows you to add your own BrightScript libraries (.brs files), which can then be utilized by your script. To
include a library, use the LIBRARY statement in your script or at the BrightScript shell prompt. The LIBRARY statement(s)
must occur at the beginning of a script, before any other statements, functions, operators, etc.

The system locates a library by searching the directory containing the current script, as well as the SYS:/script-lib/
directory. Note that the Run() function does not currently change the path of a LIBRARY statement to that of the called
script (i.e. the system will continue searching the directory of the caller script). On the other hand, running a script directly
from the BrightSign shell does modify the library search path to that of the called script.

32

Example: The first statement will include a library in the same folder as the script, while the second will include a library in
a sub-folder.

LIBRARY "myBSL1.brs"

LIBRARY "new_lib/myBSL2.brs"

Example: The following statement will include the bslCore.brs library, which has some useful BrightScript features, from
the SYS:/script-lib/ directory.

LIBRARY "v30/bslCore.brs"

DIM
DIM Name (dim1, dim2, …, dimK)

The DIM (“dimension”) statement provides a shortcut for creating roArray objects. It sets the variable Name to type
“roArray”. It can create arrays of arrays as needed for multi-dimensionality. The dimension passed to DIM is the index of
the maximum entry to be allocated (i.e. the array initial size = dimension+1), though the array will be resized larger
automatically if needed.

Example: The following two lines create identical arrays.

Dim array[5]

array = CreateObject(“roArray”, 6, true)

Note: The expression x[a,b] is identical to x[a][b].

Example: The following script demonstrates useful operations on a DIM array.

Dim c[5, 4, 6]

33

For x = 1 To 5

 For y = 1 To 4

 For z = 1 To 6

 c[x, y, z] = k

 k = k + 1

 End for

 End for

End for

k=0

For x = 1 To 5

 For y = 1 To 4

 For z = 1 To 6

 If c[x, y, z] <> k Then print"error" : Stop

 if c[x][y][z] <> k then print "error":stop

 k = k + 1

 End for

 End for

End for

Assignment (“=”)
variable = expression

The assignment statement (“=”) assigns a variable to a new value.

34

Example: In each of the following lines, the variable on the left side of the equals operator is assigned the value of the
constant or expression on the right side of the equals operator.

a$="a rose is a rose"

b1=1.23

x=x-z1

END
The END statement terminates script execution normally.

STOP
The STOP statement interrupts script execution, returns a “STOP” error, and invokes the debugger. Use the cont
command at the debugger prompt to continue execution of the script or the step command to execute a single step in the
script.

GOTO
GOTO label

The GOTO statement transfers program control to the line number specified by Label. The GOTO label statement
results in a branching operation. A label is an identifier terminated with a colon on a line that contains no other statements
or expressions.

Example:

mylabel:

print "Hello World"

goto mylabel

35

RETURN
RETURN expression

The RETURN statement returns from a function back to its caller. If the function is not type Void, RETURN can also return a
value to the caller.

REM
The REM statement instructs the compiler to ignore the remainder of the program line. This allows you to insert comments
into your script for documentation. An apostrophe (‘) may be used instead of REM.

Example:

rem ** this remark introduces the program **

'this too is a remark

PRINT
PRINT [#output_object], [@location], item list

The PRINT statement prints an item or list of items in the console. The item(s) may be strings, integers, floats, variables,
or expressions. An object with an ifInt, ifFloat, or ifString interface may also be printed. If the output_object is
specified, this statement will print to an object with an ifStreamSend interface.

If the statement is printing a list of items, the items must be separated with semicolons or commas. If semicolons are
used, spaces are not inserted between printed items; if commas are used, the cursor will automatically advance to the
next print zone before printing the next item.

Positive numbers are printed with a leading blank (without a plus sign). All numbers are printed with a trailing blank, and
no blanks are inserted before or after strings.

36

Example:

> x=5:print 25; "is equal to"; x ^2

> run

25 is equal to 25

Example:

> a$="string"

> print a$;a$,a$;" ";a$

> run

stringstring string string

Example: Each print zone is 16 characters wide. The cursor moves to the next print zone each time a comma is
encountered.

> print "zone 1","zone 2","zone 3","zone 4"

> run

zone 1 zone 2 zone 3 zone 4

Example:

> print "print statement #1 ";

> print "print statement #2"

> run

print statement #1 print statement #2

Example: In some cases, semicolons can be dropped. The following statement is legal.

Print "this is a five "5"!!"

37

A trailing semicolon overrides the cursor-return so that the next PRINT statement begins where the last left off. If no
trailing punctuation is used with a PRINT statement, the cursor drops to the beginning of the next line.

[@location]
If the console you are printing to has the ifTextField interface, you can use the @ character to specify where printing will
begin.

Example:

print #m.text_field,@width*(height/2-1)+(width-len(msg$))/2,msg$;

Whenever you use PRINT @ on the bottom line of the display, an automatic line-feed causes all displayed lines to move
up one line. To prevent this from happening, use a trailing semicolon at the end of the statement.

TAB (expression)
This statement moves the cursor to the specified position on the current line (modulo the width of the console if the TAB
position is greater than the console width).

Example:

print tab(5)"tabbed 5";tab(25)"tabbed 25"

Note the following about the TAB statement:
• The TAB statement may be used several times in a PRINT list.
• No punctuation is required after a TAB statement.
• Numerical expressions may be used to specify a TAB position.
• The TAB statement cannot be used to move the cursor to the left.
• If the cursor is beyond the specified position, the TAB statement is ignored.

38

POS(x)
This statement returns an integer that indicates the current cursor position from 0 to the maximum width of the window.
This statement requires a dummy argument in the form of any numeric expression.

Example:

print tab(40) pos(0) 'prints 40 at position 40

print "these" tab(pos(0)+5)"words" tab(pos(0)+5)"are";

print tab(pos(0)+5)"evenly" tab(pos(0)+5)"spaced"

FOR / END FOR
FOR counter_variable = initial_value TO final_value STEP increment / END FOR

The FOR statement creates an iterative loop that allows a sequence of program statements to be executed a specified
number of times.

The initial_value, final_value, and increment can be any expression. The first time the FOR statement is
executed, these three variables are evaluated and their values are saved; changing the variables during the loop will have
no affect on the operation of the loop. However, the counter_variable must not be changed, or the loop will not
operate normally. The first time the FOR statement is executed, the counter is set to both the value and type of the
initial_value.

At the beginning of each loop, the value of the counter_variable is compared with the final_value. If the value of
the counter_variable is greater than the final_value, the loop will complete and execution will continue with the
statement following the END FOR statement. If, on the other hand, the counter has not yet exceeded the final_value,
control passes to the first statement after the FOR statement. If increment is a negative number, the loop will complete
when the value of the counter_variable is less than the final_value.

39

When program flow reaches the END FOR statement, the counter is incremented by the specified increment amount (or
decremented if increment is a negative value). If the STEP [increment] language is not included in the FOR
statement, the increment defaults to 1.

Use EXIT FOR to exit a FOR block prematurely.

Example: The following script decrements i at the beginning of each loop until it is less than 1.

for i=10 to 1 step -1

 print i

end for

FOR EACH IN / END FOR
FOR EACH item IN object / END FOR

The FOR EACH statement can iterate through a set of items in any object that has an ifEnum interface (i.e. an
enumerator). The FOR block is terminated with the END FOR statement. Objects that are ordered intrinsically (such as
roList) are enumerated in order, while objects that have no intrinsic order (such as roAssociativeArray) are enumerated in
apparent random order. It is possible to delete entries as they are enumerated.

Use EXIT FOR to exit a FOR block prematurely.

The following objects can be enumerated: roList, roArray, roAssociativeArray, roMessagePort.

Example: The following script iterates over an associative array in random order, prints each key/value pair, then deletes
it.

aa={joe: 10, fred: 11, sue:9}

40

For each n in aa

 Print n;aa[n]

 aa.delete[n]

end for

WHILE / EXIT WHILE
WHILE expression / EXIT WHILE

A WHILE loop executes until the specified expression is false. Use the EXIT WHILE statement to exit a WHILE block
prematurely.

Example:

k=0

while k<>0

 k=1

 Print "loop once"

end while

while true

 Print "loop once"

 Exit while

End while

IF / THEN / ELSE
IF expression THEN statements [ELSE statements]

41

Note: This is the single-line form of the IF THEN ELSE statement; see the next section for more details about the block
form of the IF THEN ELSE statement.

The IF statement instructs the interpreter to test the following expression. If the expression is True, control will proceed to
the statements immediately following the expression. If the expression is False, control will jump to either the matching
ELSE statement (if there is one) or to the next program line after the block.

Example:

if x>127 then print "out of range" : end

Note: THEN is optional in the above and similar statements. However, THEN is sometimes required to eliminate ambiguity,
as in the following example.

Example:

if y=m then m=o 'won't work without THEN

Block IF / ELSEIF / THEN / ENDIF
The block (i.e. multi-line) form of IF / THEN / ELSE has the following syntax:

 If BooleanExpression [Then]

 [Block]

 [ElseIfStatement+]

 [ElseStatement]

 End If

ElseIfStatement ::=

42

 ElseIf BooleanExpression [Then]

 [Block]

ElseStatement ::=

 Else

 [Block]

Example:

vp_msg_loop:

 msg=wait(tiut, p)

 if type(msg)="rovideoevent" then

 if debug then print "video event";msg.getint()

 if lm=0 and msg.getint() = meden then

 if debug then print "videofinished"

 retcode=5

 return

 endif

 else if type(msg)="rogpiobutton" then

 if debug then print "button press";msg

 if esc0 and msg=b0 then retcode=1:return

 if esc1 and msg=b1 then retcode=2:return

 if esc2 and msg=b2 then retcode=3:return

 if esc3 and msg=b3 then retcode=4:return

 else if type(msg)=" Invalid" then

 if debug then print "timeout"

 retcode=6

 return

43

 endif

 goto vp_msg_loop

Function() As Type / End Function
Function name(parameter As Type, …) As Type

Note: Each function has its own scope.

A function is declared using the Function() statement. The parentheses may contain one or more optional parameters;
parameters can also have default values and expressions.

The type of each parameter may be declared. The return type of the function may also be declared. If a parameter type or
return type is not declared, it is Dynamic by default. Intrinsic types are passed by value (and a copy is made), while
objects are passed by reference. The Sub statement can be used instead of Function as a shortcut for creating a
function with return type Void.

A parameter can be one of the following types:

• Integer
• Float
• Double
• String
• Object
• Dynamic

The function return can be one of the following types:

• Void

44

• Integer
• Float
• Double
• String
• Object
• Dynamic

Example:

Function cat(a, b)

 Return a+b 'a, b could be numbers or strings

End Function

Function five() As Integer

 Return 5

End function

Function add(a As Integer, b As Integer) As Integer

 Return a+b

End function

Function add2(a As Integer, b=5 as Integer) As Integer

 Return a+b

End Function

Function add3(a As Integer, b=a+5 as Integer) As Integer

 Return a+b

45

End Function

“m” Identifier
If a function is called from an associative array, then the local variable m is set to the associative array in which the
function is stored. If the function is not called from an associative array, then its m variable is set to an associative array
that is global to the module and persists across calls.

The m identifier should only be used for the purpose stated above: We do not recommend using m as a general-purpose
identifier.

Example:

sub main()

 obj={

 add: add

 a: 5

 b: 10

 }

 obj.add()

 print obj.result

end sub

function add() As void

 m.result=m.a+m.b

end function

46

Anonymous Functions
A function without a name declaration is considered anonymous.

Example: The following is a simple anonymous function declaration.

myfunc=function (a, b)

 Return a+b

end function

print myfunc(1,2)

Example: Anonymous functions can also be used with associative-array literals.

q = {

starring : function(o, e)

str = e.GetBody()

print "Starring: " + str

toks = box(str).tokenize(",")

for each act in tok

actx = box(act).trim()

if actx <> "" then

print "Actor: [" + actx + "]"

 o.Actors.Push(actx)

endif

end for

return 0

end function

}

47

q.starring(myobj, myxml)

48

BUILT-IN FUNCTIONS
BrightScript features a set of built-in, module-scope, intrinsic functions. A number of file I/O, string, mathematics, and
system functions are also available via the roGlobal object, which is documented in the Object Reference Manual.

Type()
Type(a As Variable) As String

This function returns the type of the passed variable and/or object. See the Object Reference Manual for a list of available
object types.

GetGlobalAA()
GetGlobalAA() As Object

This function fetches the global associative array for the current script.

Rnd()
Rnd(range As Integer) As Integer

Rnd(0) As Float

If passed a positive, non-zero integer, this function returns a pseudo-random integer between 1 and the argument value.
The range includes the argument value: For example, calling Rnd(55) will return a pseudo-random integer greater than 0
and less than 56.

If the argument is 0, this function returns a pseudo-random Float value between 0 and 1.

49

Note: The Rnd() functions utilize a pseudo-random seed number that is generated internally and not accessible to the
user.

Box()
Box(type As Dynamic) As Object:

This function returns an object version of the specified intrinsic type. Objects will be passed through.

Example:

b = box("string")

b = box(b) ' b does not change

Run()
Run(file_name As String, [optional_arg As Dynamic, …]) As Dynamic

Run(file_names As roArray, [optional_arg As Dynamic, …]) As Dynamic

This function runs one or more scripts from the current script. You may append optional arguments, which will be passed
to the Main() function of the script(s). The called script may also return arguments to the caller script.

If a string file name is passed, the function will compile and run the corresponding file. If an array of files is passed, the
function will compile each file, link them together, and run them.

Example:

Sub Main()

 Run("test.brs")

 BreakIfRunError(LINE_NUM)

50

 Print Run("test2.brs", "arg 1", "arg 2")

 if Run(["file1.brs","file2.brs"])<>4 then stop

 BreakIfRunError(LINE_NUM)

 stop

End Sub

Sub BreakIfRunError(ln)

 el=GetLastRunCompileError()

 if el=invalid then

 el=GetLastRunRuntimeError()

 if el=&hFC or el=&hE2 then return

 'FC==ERR_NORMAL_END, E2=ERR_VALUE_RETURN

 print "Runtime Error (line ";ln;"): ";el

 stop

 else

 print "compile error (line ";ln;")"

 for each e in el

 for each i in e

 print i;": ";e[i]

 end for

 end for

 stop

 end if

End Sub

51

Eval()
Eval(code_snippet As String) As Dynamic

This function runs the passed code snippet in the context of the current function. The function compiles the snippet, then
executes the byte-code. If the code compiles and runs successfully, it will return zero. If the code compiles successfully,
but encounters a runtime error, it will return an integer indicating the error code (using the same codes as the
GetLastRunRuntimeError() function). If compilation fails, it will return an roList object; the roList structure is identical
to that of the GetLastRunCompileError() function.

The Eval() function can be useful in two cases:

• When you need to dynamically generate code at runtime.
• When you need to execute a statement that could result in a runtime error, but you don’t want code execution to

stop.

Example:

PRINT Eval("1/0") ‘Returns a divide by zero error.

GetLastRunCompileError()
GetLastRunCompileError() As roList

This function returns an roList object containing compile errors (or Invalid if no errors occurred). Each roList entry is an
roAssociativeArray object containing the following keys:

• ERRSTR: The compile error type (as String)
• FILESPEC: The file URI of the script containing the error (as String)
• ERRNO: The error number (as Integer)
• LINENO: The line number where the error occurs (as Integer)

52

The following are possible ERRNO values:
Error Code Description Expanded Description
&hBF 191 ERR_NW ENDWHILE statement occurs without WHILE statement.
&hBE 190 ERR_MISSING_ENDWHILE WHILE statement occurs without ENDWHILE statement.
&hBC 188 ERR_MISSING_ENDIF End of script reached without finding an ENDIF statement.
&hBB 187 ERR_NOLN No line number found.
&hBA 186 ERR_LNSEQ Line number sequence error.
&hB9 185 ERR_LOADFILE Error loading file.
&hB8 184 ERR_NOMATCH MATCH statement does not match.
&hB7 183 ERR_UNEXPECTED_EOF Unexpected end of string encountered during string compilation.
&hB6 182 ERR_FOR_NEXT_MISMATCH Variable on NEXT does not match FOR.
&hB5 181 ERR_NO_BLOCK_END
&hB4 180 ERR_LABELTWICE Label defined more than once.
&hB3 179 ERR_UNTERMED_STRING Literal string does not have end quote.
&hB2 178 ERR_FUN_NOT_EXPECTED
&hB1 177 ERR_TOO_MANY_CONST
&hB0 176 ERR_TOO_MANY_VAR
&hAF 175 ERR_EXIT_WHILE_NOT_IN_WHILE
&hAE 174 ERR_INTERNAL_LIMIT_EXCEDED
&hAD 173 ERR_SUB_DEFINED_TWICE
&hAC 172 ERR_NOMAIN
&hAB 171 ERR_FOREACH_INDEX_TM
&hAA 170 ERR_RET_CANNOT_HAVE_VALUE
&hA9 169 ERR_RET_MUST_HAVE_VALUE
&hA8 168 ERR_FUN_MUST_HAVE_RET_TYPE
&hA7 167 ERR_INVALID_TYPE
&hA6 166 ERR_NOLONGER Feature no longer supported.

53

&hA5 165 ERR_EXIT_FOR_NOT_IN_FOR
&hA4 164 ERR_MISSING_INITILIZER
&hA3 163 ERR_IF_TOO_LARGE
&hA2 162 ERR_RO_NOT_FOUND
&hA1 161 ERR_TOO_MANY_LABELS
&hA0 160 ERR_VAR_CANNOT_BE_SUBNAME
&h9F 159 ERR_INVALID_CONST_NAME
&h9E 158 ERR_CONST_FOLDING

GetLastRunRuntimeError()
GetLastRunRuntimeError() As Integer

This function returns the error code that resulted from the last Run() function.

These codes indicate a normal result:
Error Code Description Expanded Description
&hFF 255 ERR_OKAY
&hFC 252 ERR_NORMAL_END Execution ended normally, but with termination (e.g. END, shell

"exit", window closed).
&hE2 226 ERR_VALUE_RETURN Return executed with value returned on the stack.
&hE0 224 ERR_NO_VALUE_RETURN Return executed without value returned on the stack.

The following codes indicate runtime errors:
Error Code Description Expanded Description
&hFE 254 ERR_INTERNAL Unexpected condition occurred.
&hFD 253 ERR_UNDEFINED_OPCD Opcode could not be handled.

54

&hFB 251 ERR_UNDEFINED_OP Expression operator could not be handled.
&hFA 250 ERR_MISSING_PARN
&hF9 249 ERR_STACK_UNDER No value to pop off the stack.
&hF8 248 ERR_BREAK scriptBreak() function called.
&hF7 247 ERR_STOP STOP statement executed.
&hF6 246 ERR_RO0 bscNewComponent failed because object class not found.
&hF5 245 ERR_R01 BrightScript member function call does not have right number of

parameters.
&hF4 244 ERR_RO2 BrightScript member function not found in object or interface.
&hF3 243 ERR_RO3 BrightScript interface not a member of the object.
&hF2 242 ERR_TOO_MANY_PARAM Too many function parameters to handle.
&hF1 241 ERR_WRONG_NUM_PARAM Number of function parameters incorrect.
&hF0 240 ERR_RVIG Function returns a value, but is ignored.
&hEF 239 ERR_NOTPRINTABLE Value not printable.
&hEE 238 ERR_NOTWAITABLE WAIT statement cannot be applied to object because object does

not have an roMessagePort interface.
&hED 237 ERR_MUST_BE_STATIC Interface calls from rotINTERFACE type must be static.
&hEC 236 ERR_RO4 "." Dot Operator used on object that does not contain legal object

or interface reference.
&hEB 235 ERR_NOTYPEOP Operation attempted on two type-less operands.
&hE9 233 ERR_USE_OF_UNINIT_VAR Uninitialized variable used illegally.
&hE8 232 ERR_TM2 Non-numeric index applied to array.
&hE7 231 ERR_ARRAYNOTDIMMED
&hE6 230 ERR_USE_OF_UNINIT_BRSUBREF Reference to uninitialized SUB.
&hE5 229 ERR_MUST_HAVE_RETURN
&hE4 228 ERR_INVALID_LVALUE Left side of the expression is invalid.
&hE3 227 ERR_INVALID_NUM_ARRAY_IDX Number of array indexes is invalid.

55

&hE1 225 ERR_UNICODE_NOT_SUPPORTED
&hE0 224 ERR_NOTFUNOPABLE
&hDF 223 ERR_STACK_OVERFLOW
&h20 32 ERR_CN Continue (cont or c) not allowed.
&h1C 28 ERR_STRINGTOLONG
&h1A 26 ERR_OS String space has run out.
&h18 24 ERR_TM A Type Mismatch (string /number operation mismatch) has

occurred.
&h14 20 ERR_DIV_ZERO
&h12 18 ERR_DD Attempted to re-dimension array.
&h10 16 ERR_BS Array subscript out of bounds.
&h0E 14 ERR_MISSING_LN
&h0C 12 ERR_OUTOFMEM
&h08 8 ERR_FC Invalid parameter passed to function/array (e.g. a negative matrix

dim or square root).
&h06 6 ERR_OD Out of data (READ).
&h04 4 ERR_RG Return without Gosub.
&h02 2 ERR_SYNTAX
&h00 0 ERR_NF Next without For.

56

BRIGHTSCRIPT CORE LIBRARY EXTENSION
There are a number of built-in functions that are not part of the BrightScript Core Library. You can use the LIBRARY
statement to include this subset of functions:

LIBRARY "v30/bslCore.brs"

• bslBrightScriptErrorCodes() As roAssociativeArray: Returns an associative array of name/value
pairs corresponding to BrightScript error codes and their descriptions.

• bslGeneralConstraints() As roAssociativeArray: Returns an associative array of name/value pairs
corresponding to system constants

• bslUniversalControlEventCodes() As roAssociativeArray: Returns an associative array of
name/value pairs corresponding to the remote key code constraints.

• AsciiToHex(ascii As String) As String: Returns a hex-formatted version of the passed ASCII string.
• HexToAscii(hex As String) As String: Returns an ASCII-formatted version of the passed hex string.
• HexToInteger(hex As String) As Integer: Returns the integer value of the passed hex string.

57

BRIGHTSCRIPT DEBUG CONSOLE
If, while a script is running, a runtime error occurs or a STOP statement is encountered, the BrightSign application will
enter the BrightScript debug console. This console can be accessed from a terminal program using a null-modem cable
connected to the RS-232, GPIO, or VGA port (depending on the player model). Networked players can also be accessed
via Telnet or SSH.

The console scope is set to the function that was running when the runtime error or STOP statement occurred. While in the
console, you can type in any BrightScript statement; it will then be compiled and executed in the current context.

Typically, the debug console is the default device for the PRINT statement.

Console Commands
The following console commands are currently available:
bt Print a backtrace of call-function context frames.
classes List all public classes.
cont or c Continue script execution.
counts List count of BrightScript Component instances.
da Show disassembly and bytecode for this function.
down or d Move one position down the function context chain.
exit Exit the debug shell.
gc Run the garbage collector and show collection statistics.
hash Print the internal hash-table histograms.
last Show the last line that executed.
method <class> List methods provided by specified class.
method <class>.<interface> List methods provided by the specified interface or class.
list List the current source of the current function.

http://brightsignbiz.s3.amazonaws.com/documents/Enabling%20Telnet%20and%20SSH.pdf�

58

ld Show line data (source records)
next Show the next line to execute.
bsc List all allocated BrightScript Component instances.
stats Show statistics.
step or s Step one program statement.
t Step one statement and show each executed opcode.
up or u Move one function up the context chain.
var Display local variables and their types/values.
print or p or ? Print variable value or expression.

59

APPENDIX A – BRIGHTSCRIPT VERSIONS
BrightScript Version Matrix
January 9, 2009

 H
D

20
00

0
1.

3
Br

an
ch

H
D

20
00

 2

.0

Br
an

ch

C
om

pa
ct

M

ai
n

Li
ne

SnapShot Date 1/7/2008 7/16/2008 1/9/2009
Defxxx, on, gosub, clear, random,
data, read, restore, err, errl, let,
clear, line numbers X X
Intrinsic Arrays X X
Compiler X X
AA & dot Op & m reference X X
Sub/Functions X X
ifEnum & For Each X X
For/Next Does Not Always Execute
At Least Once X X
Exit For X X
Invalid Type. Errors that used to be
Int Zero are now Invalid. Added
roInvalid; Invalid Autoboxing X
Array's use roArray; Added ifArray X
Uninit Var Usage No Longer Allowed X
Sub can have "As" (like Function) X
roXML Element & XML Ops dot and
@ X

60

Type() Change: Now matches
declaration names (eg. Integer not
roINT32) X
Added roBoolean X
Added dynamic Type; Type now
optional on Sub/Functions X
And/Or Don't Eval un-needed Terms X
Sub/Fun Default Parameter Values
e.g. Sub (x=5 As Integer) X
AA declaration Op { } X
Array Declaration Op [] X
Change Array Op from () to [] X
Anonymous Functions X
Added Circ. Ref. Garbage Collector X
Add Eval(), Run(), and Box() X

61

APPENDIX B – RESERVED WORDS

AND ENDSUB LINE_NUM RND

CREATEOBJECT ENDWHILE M* STEP

DIM EXIT NEXT STOP

EACH EXITWHILE NOT SUB

EACH FALSE OBJFUN TAB

ELSE FOR OR THEN

END FUNCTION POS TO

ENDFOR GOTO PRINT TRUE

ENDFUNCTION IF REM TYPE

ENDIF INVALID RETURN WHILE

*Although m is not strictly a reserved word, it should not be used as an identifier outside of its intended purpose.

62

APPENDIX C – EXAMPLE SCRIPT
The following code uses GPIO buttons 1, 2, 3, 4 for controls. It will work on any BrightSign model that has a video output
and a GPIO port.

REM

REM The game of Snake

REM demonstrates BrightScript programming concepts

REM June 22, 2008

REM

REM Every BrightScript program must have a single Main()

REM

Sub Main()

 game_board=newGameBoard()

 While true

 game_board.SetSnake(newSnake(game_board.StartX(), game_board.StartY()))

 game_board.Draw()

 game_board.EventLoop()

 if game_board.GameOver() then ExitWhile

 End While

End Sub

REM ***

63

REM ***

REM *************** *********************

REM *************** GAME BOARD OBJECT *********************

REM *************** *********************

REM ***

REM ***

REM

REM An example BrightScript constructor. "newGameBoard()" is regular Function of module scope

REM BrightScript Objects are "dynamic" and created at runtime. They have no "class".

REM The object container is a BrightScript Component of type roAssocitiveArray (AA).

REM The AA is used to hold member data and member functions.

REM

Function newGameBoard() As Object

 game_board=CreateObject("roAssociativeArray") ' Create a BrightScript Component of type/class roAssociativeArray

 game_board.Init=gbInit ' Add an entry to the AA of type roFunction with value gbDraw (a sub defined in this

module)

 game_board.Draw=gbDraw

 game_board.SetSnake=gbSetSnake

 game_board.EventLoop=gbEventLoop

 game_board.GameOver=gbGameOver

 game_board.StartX=gbStartX

 game_board.StartY=gbStartY

 game_board.Init() ' Call the Init member function (which is gbInit)

 return game_board

64

End Function

REM

REM gbInit() is a member function of the game_board BrightScript Object.

REM When it is called, the "this" pointer "m" is set to the appropriate instance by

REM the BrightScript bytecode interpreter

REM

Function gbInit() As Void

 REM

 REM button presses go to this message port

 REM

 m.buttons = CreateObject("roMessagePort")

 m.gpio = CreateObject("roGpioControlPort")

 m.gpio.SetPort(m.buttons)

 REM

 REM determine optimal size and position for the snake gameboard

 REM

 CELLWID=16 ' each cell on game in pixels width

 CELLHI=16 ' each cell in pix height

 MAXWIDE=30 ' max width (in cells) of game board

 MAXHI=30 ' max height (in cells) of game board

 vidmode=CreateObject("roVideoMode")

 w=cint(vidmode.GetResX()/CELLWID)

 if w>MAXWIDE then w = MAXWIDE

 h=cint(vidmode.GetResY()/CELLHI)

65

 if h>MAXHI then h=MAXHI

 xpix = cint((vidmode.GetResX() - w*CELLWID)/2) ' center game board on screen

 ypix = cint((vidmode.GetResY() - h*CELLHI)/2) ' center game board on screen

 REM

 REM Create Text Field with square char cell size

 REM

 meta=CreateObject("roAssociativeArray")

 meta.AddReplace("CharWidth",CELLWID)

 meta.AddReplace("CharHeight",CELLHI)

 meta.AddReplace("BackgroundColor",&H202020) 'very dark grey

 meta.AddReplace("TextColor",&H00FF00) ' Green

 m.text_field=CreateObject("roTextField",xpix,ypix,w,h,meta)

 if type(m.text_field)<>"roTextField" then

 print "unable to create roTextField 1"

 stop

 endif

End Function

REM

REM As Object refers to type BrightScript Component

REM m the "this" pointer

REM

Sub gbSetSnake(snake As Object)

 m.snake=snake

End Sub

66

Function gbStartX() As Integer

 return cint(m.text_field.GetWidth()/2)

End Function

Function gbStartY() As Integer

 return cint(m.text_field.GetHeight()/2)

End Function

Function gbEventLoop() As Void

 tick_count=0

 while true

 msg=wait(250, m.buttons) ' wait for a button, or 250ms (1/4 a second) timeout

 if type(msg)="roGpioButton" then

 if msg.GetInt()=1 m.snake.TurnNorth()

 if msg.GetInt()=2 m.snake.TurnSouth()

 if msg.GetInt()=3 m.snake.TurnEast()

 if msg.GetInt()=4 m.snake.TurnWest()

 else 'here if time out happened, move snake forward

 tick_count=tick_count+1

 if tick_count=6 then

 tick_count=0

 if m.snake.MakeLonger(m.text_field) then return

 else

67

 if m.snake.MoveForward(m.text_field) then return

 endif

 endif

 end while

End Function

Sub gbDraw()

 REM

 REM given a roTextField Object in "m.text_field", draw a box around its edge

 REM

 solid=191 ' use asc("*") if graphics not enabled

 m.text_field.Cls()

 for w=0 to m.text_field.GetWidth()-1

 print #m.text_field,@w,chr(solid);

 print #m.text_field,@m.text_field.GetWidth()*(m.text_field.GetHeight()-1)+w,chr(solid);

 end for

 for h=1 to m.text_field.GetHeight()-2

 print #m.text_field,@h*m.text_field.GetWidth(),chr(solid);

 print #m.text_field,@h*m.text_field.GetWidth()+m.text_field.GetWidth()-1,chr(solid);

 end for

 m.snake.Draw(m.text_field)

68

End Sub

Function gbGameOver() As Boolean

 msg$= " G A M E O V E R "

 msg0$=" "

 width = m.text_field.GetWidth()

 height = m.text_field.GetHeight()

 while true

 print #m.text_field,@width*(height/2-1)+(width-len(msg$))/2,msg$;

 sleep(300)

 print #m.text_field,@width*(height/2-1)+(width-len(msg$))/2,msg0$;

 sleep(150)

 REM GetMessage returns the message object, or an int 0 if no message available

 If m.buttons.GetMessage() <> invalid Then Return False

 endwhile

End Function

REM ***

REM ***

REM ****************** ***********************

REM ****************** SNAKE OBJECT ***********************

REM ****************** ***********************

REM ***

REM ***

69

REM

REM construct a new snake BrightScript object

REM

Function newSnake(x As Integer, y As Integer) As Object

' Create AA BrightScript Component; the container for a "BrightScript Object"

 snake=CreateObject("roAssociativeArray")

 snake.Draw=snkDraw

 snake.TurnNorth=snkTurnNorth

 snake.TurnSouth=snkTurnSouth

 snake.TurnEast=snkTurnEast

 snake.TurnWest=snkTurnWest

 snake.MoveForward=snkMoveForward

 snake.MakeLonger=snkMakeLonger

 snake.AddSegment=snkAddSegment

 snake.EraseEndBit=snkEraseEndBit

 REM

 REM a "snake" is a list of line segments

 REM a line segment is an roAssociativeArray that conains a length and direction (given by the x,y delta needed to move as it is drawn)

 REM

 snake.seg_list = CreateObject("roList")

 snake.AddSegment(1,0,3)

 REM

 REM The X,Y pos is the position of the head of the snake

 REM

70

 snake.snake_X=x

 snake.snake_Y=y

 snake.body=191 ' use asc("*") if graphics not enabled.

 snake.dx=1 ' default snake direction / move offset

 snake.dy=0 ' default snake direction / move offset

 return snake

End Function

Sub snkDraw(text_field As Object)

 x=m.snake_X

 y=m.snake_Y

 for each seg in m.seg_list

 xdelta=seg.xDelta

 ydelta=seg.yDelta

 for j=1 to seg.Len

 text_field.SetCursorPos(x, y)

 text_field.SendByte(m.body)

 x=x+xdelta

 y=y+ydelta

 end for

 end for

End Sub

Sub snkEraseEndBit(text_field As Object)

71

 x=m.snake_X

 y=m.snake_Y

 for each seg in m.seg_list

 x=x+seg.Len*seg.xDelta

 y=y+seg.Len*seg.yDelta

 end for

 text_field.SetCursorPos(x, y)

 text_field.SendByte(32) ' 32 is ascii space, could use asc(" ")

End Sub

Function snkMoveForward(text_field As Object)As Boolean

 m.EraseEndBit(text_field)

 tail=m.seg_list.GetTail()

 REM

 REM the following shows how you can use an AA's member functions to perform the same

 REM functions the BrightScript . operator does behind the scenes for you (when used on an AA).

 REM there is not point to this longer method other than illustration

 REM

 len=tail.Lookup("Len") ' same as len = tail.Len (or tail.len, BrightScript syntax is not case sensative)

 len = len-1

 if len=0 then

 m.seg_list.RemoveTail()

 else

 tail.AddReplace("Len",len) ' same as tail.Len=len

 endif

72

 return m.MakeLonger(text_field)

End Function

Function snkMakeLonger(text_field As Object) As Boolean

 m.snake_X=m.snake_X+m.dx

 m.snake_Y=m.snake_Y+m.dy

 text_field.SetCursorPos(m.snake_X, m.snake_Y)

 if text_field.GetValue()=m.body then return true

 text_field.SendByte(m.body)

 head = m.seg_list.GetHead()

 head.Len=head.Len+1

 return false

End Function

Sub snkAddSegment(dx As Integer, dy As Integer, len as Integer)

 aa=CreateObject("roAssociativeArray")

 aa.AddReplace("xDelta",-dx) ' line segments draw from head to tail

 aa.AddReplace("yDelta",-dy)

 aa.AddReplace("Len",len)

 m.seg_list.AddHead(aa)

End Sub

Sub snkTurnNorth()

73

 if m.dx<>0 or m.dy<>-1 then m.dx=0:m.dy=-1:m.AddSegment(m.dx, m.dy, 0) 'north

End Sub

Sub snkTurnSouth()

 if m.dx<>0 or m.dy<>1 then m.dx=0:m.dy=1:m.AddSegment(m.dx, m.dy, 0) 'south

End Sub

Sub snkTurnEast()

 if m.dx<>-1 or m.dy<>0 then m.dx=-1:m.dy=0:m.AddSegment(m.dx, m.dy, 0) 'east

End Sub

Sub snkTurnWest()

 if m.dx<>1 or m.dy<>0 then m.dx=1:m.dy=0:m.AddSegment(m.dx, m.dy, 0) 'west

End Sub

