

 1

`

OBJECT REFERENCE MANUAL

Firmware Versions 5.1.x

BrightSign, LLC. 16780 Lark Ave., Suite B Los Gatos, CA 95032 | 408-852-9263 | www.brightsign.biz

TABLE OF CONTENTS

INTRODUCTION .. 1

INTERFACES AND METHODS OVERVIEW .. 2

Classes .. 3
Object and Class Name Syntax ... 3
Zones... 3
Event Loops ... 4
BrightSign Object Library ... 5

BRIGHTSCRIPT CORE OBJECTS ... 6

roArray ... 6
roAssociativeArray ... 8
roBoolean .. 10
roByteArray .. 11
roDouble, roIntrinsicDouble ... 13
roFunction .. 14
roGlobal ... 15
roInt, roFloat, roString .. 23
roList .. 27
roRegex ... 30
roXMLElement ... 32

roXMLList .. 36

PRESENTATION AND WIDGET OBJECTS ... 39

roAudioEventMx .. 39
roAudioOutput ... 40
roAudioPlayer .. 42
roAudioPlayerMx ... 49
roCanvasWidget .. 54
roClockWidget ... 60
roHtmlWidget ... 63
roImageBuffer .. 68
roImagePlayer ... 69
roImageWidget .. 74
roRectangle ... 77
roShoutcastStream .. 78
roShoutcastStreamEvent ... 79
roTextField ... 80
roTextWidget ... 83
roVideoEvent, roAudioEvent .. 88
roVideoInput .. 90
roVideoMode ... 93
roVideoPlayer .. 99
roTouchCalibrationEvent ... 114
roTouchEvent .. 115
roTouchScreen .. 116

FILE OBJECTS ... 122

roAppendFile ... 122
roCreateFile ... 124
roReadFile ... 126
roReadWriteFile ... 128

HASHING AND STORAGE OBJECTS ... 130

roBlockCipher .. 130
roBrightPackage .. 133
roDiskErrorEvent ... 136
roDiskMonitor .. 137
roHashGenerator ... 139
roPassKey ... 140
roRegistry .. 142
roRegistrySection .. 143
roSqliteDatabase ... 145
roSqliteEvent ... 148
roSqliteStatement .. 149
roStorageAttached, roStorageDetached .. 156
roStorageHotplug .. 158
roStorageInfo ... 160

CONTENT MANAGEMENT OBJECTS ... 162

roAssetCollection ... 162
roAssetFetcher .. 165
roAssetFetcherEvent ... 169
roAssetFetcherProgressEvent ... 174
roAssetPool ... 175

roAssetPoolFiles .. 177
roAssetRealizer ... 179
roAssetRealizerEvent .. 181
roSyncSpec ... 183

NETWORKING OBJECTS .. 185

roDatagramSender, roDatagramReceiver, roDatagramSocket, roDatagramEvent ... 185
roHttpEvent .. 190
roHttpServer .. 192
roMediaServer ... 197
roMediaStreamer ... 199
roMediaStreamerEvent .. 201
roMimeStream ... 202
roMimeStreamEvent .. 203
roNetworkAdvertisement ... 204
roNetworkAttached, roNetworkDetached ... 206
roNetworkConfiguration ... 207
roNetworkHotplug .. 216
roNetworkStatistics .. 217
roRssParser, roRssArticle ... 219
roRtspStream .. 221
roShoutcastStream .. 222
roShoutcastStreamEvent ... 223
roSnmpAgent ... 224
roSnmpEvent ... 225
roStreamByteEvent ... 227
roStreamConnectResultEvent ... 228

roStreamEndEvent .. 229
roStreamLineEvent .. 230
roSyncManager ... 231
roSyncManagerEvent .. 235
roTCPConnectEvent .. 236
roTCPServer .. 237
roTCPStream ... 238
roUrlStream ... 240
roUrlTransfer ... 241
roUrlEvent .. 250

INPUT/OUTPUT OBJECTS ... 255

roCecInterface ... 255
roCecRxFrameEvent, roCecTxCompleteEvent ... 256
roChannelManager .. 258
roControlPort ... 266
roControlUp, roControlDown ... 272
roGpioControlPort, roGpioButton ... 273
roIRReceiver .. 275
roIRDownEvent, roIRRepeatEvent, roIRUpEvent .. 277
roIRTransmitter .. 278
roIRRemote ... 279
roIRRemotePress .. 281
roKeyboard, roKeyboardPress .. 283
roMessagePort .. 286
roSequenceMatcher .. 288
roSequenceMatchEvent .. 291

roSerialPort .. 292

SYSTEM OBJECTS .. 295

roDeviceInfo .. 295
roResourceManager .. 298
roSystemLog ... 300

DATE AND TIME OBJECTS ... 302

roDateTime .. 302
roSystemTime ... 304
roTimer .. 309
roTimerEvent ... 313
roTimeSpan ... 314

LEGACY OBJECTS .. 315

roRtspStreamEvent ... 315
roSyncPool .. 316
roSyncPoolEvent ... 319
roSyncPoolFiles ... 320
roSyncPoolProgressEvent ... 321

Change Log .. 322

4.4.x, 4.2.x, 3.10.x ... 322
4.6.x, 4.4.x, 3.10.x ... 323
4.7.x ... 324
4.8.x ... 328

5.0.x ... 330
5.1.x ... 331

1

INTRODUCTION
BrightSign players use a standardized library of BrightScript objects to expose functionality for public software
development. To publish a new API for interacting with BrightSign hardware, we create a new BrightScript object.

This Object Reference Manual describes the BrightScript object architecture in two main sections:

• How to use BrightScript objects (as a script writer)
• How objects are defined for BrightSign players

2

INTERFACES AND METHODS OVERVIEW
Every BrightScript object consists of one or more "interfaces." An interface consists of one or more "methods." For
example, the roVideoPlayer object has several interfaces, including ifSetMessagePort. The interface ifSetMessagePort
has one method: SetPort().

Example: The abstract interface ifSetMessagePort is exposed and implemented by both the roControlPort and the
roVideoPlayer objects. Once the SetPort() method is called, these objects will send their events to the supplied
message port. This is discussed more in the Event Loops section below.

p = CreateObject("roMessagePort")

video = CreateObject("roVideoPlayer")

gpio = CreateObject("roControlPort", "BrightSign")

gpio.SetPort(p)

video.SetPort(p)

The above syntax makes use of a shortcut provided by the language: The interface name is optional, unless it is needed
to resolve name conflicts. For example, the following two lines of code carry out the exact same function:

gpio.SetPort(p)

gpio.ifSetMessagePort.SetPort(p)

BrightScript Objects consist only of interfaces, and interfaces define only methods. There is no concept of a "property" or
variable at the object or interface level. These must be implemented as “set” or “get” methods in an interface.

3

Classes
A "class name" is used to create a BrightScript object. For example, the class name for a video playback instance is
roVideoPlayer, so, to initialize a video playback instance, you would use code similar to the following:

video = CreateObject("roVideoPlayer")

Note that “video” can be any name that follows the syntax outlined in the next section.

Object and Class Name Syntax
Class names have the following characteristics:

• Must start with an alphabetic character (a – z).
• May consist of alphabetic characters, numbers, or the "_" (i.e. underscore) symbol.
• Are not case sensitive.
• May be of any reasonable length.

Zones
With the BrightSign Zones feature, you can divide the screen into rectangles and play different content in each rectangle.

Depending on the BrightSign model, zones can contain video, images, HTML content, audio, a clock, or text. There can
be only one video zone per screen for all HD and LS models. However, there can be multiple zones of other types on the
screen. A text zone can contain simple text strings or can be configured to display an RSS feed in a ticker-type display.

To enable zone functionality, the following global function must be called in the script:

EnableZoneSupport(enable As Boolean) As Void

4

When zones are enabled, the image layer is on top of the video layer by default. The default behavior can be modified
using the roVideoMode.SetGraphicsZOrder() method.

When zones are not enabled, the image layer is hidden whenever video is played, and the video layer is hidden whenever
images are played.

Event Loops
When writing anything more than a very simple script, an "event loop" will need to be created. Event loops typically have
the following structure:

1. Wait for an event.
2. Process the event.
3. Return to step 1.

An event can be any number occurrences: a button has been pressed; a timer has been triggered; a UDP message has
been received; a video has finished playing back; etc.

By convention, event scripting for BrightScript objects follows this work flow:

1. An object of the type roMessagePort is created by the user’s script.
2. Objects that can send events (i.e. those that support the ifMessagePort/ifSetMessagePort interface) are instructed

to send their events to this message port using the SetPort() method. You can set up multiple message ports
and have each event go to its own message port, but it is usually simpler to create one message port and have all
the events sent to this one port.

3. The script waits for an event. The actual function to do this is ifMessagePort.WaitMessage(), but the built-in
Wait() statement in BrightScript allows you to do this more easily.

5

4. If multiple event types are possible, your script should determine which event the wait function received, then
process it. The script then jumps back to the wait.

An event can be generated by any BrightScript Object. For example, the class roControlPort sends events of type
roControlDown and roControlUp. The roControlDown implements the ifInt interface, which allows access to an integer. An
event loop needs to be aware of the possible events it can receive and be able to process them.

BrightSign Object Library
The following chapters provide definitions for objects that can be used in BrightScript. A brief description, a list of
interfaces, and the member functions of the interfaces are provided for each object class.

While most BrightScript objects have self-contained sections in this chapter, some objects are grouped in the same
section if they are closely related or depend on one another for functionality.

6

BRIGHTSCRIPT CORE OBJECTS

roArray
This object stores objects in a continuous array of memory locations. Since an roArray contains BrightScript components,
and there are object wrappers for most intrinsic data types, entries can either be different types or all of the same type.

Object Creation: The roArray object is created with two parameters.

CreateObject("roArray", size As Integer, resize As Boolean)

• size: The initial number of elements allocated for an array.
• resize: If true, the array will be resized larger to accommodate more elements if needed. If the array is large, this

process might take some time.

The dim statement may be used instead of the CreateObject function to create a new array. The dim statement is
sometimes advantageous because it automatically creates array-of-array structures for multi-dimensional arrays.

Interfaces: ifArray, ifEnum, ifArrayGet, ifArraySet

The ifArray interface provides the following:

• Peek() As Dynamic: Returns the last (highest index) array entry without removing it.
• Pop() As Dynamic: Returns the last (highest index) entry and removes it from the array.
• Push(a As Dynamic): Adds a new highest index entry to the end of the array
• Shift() As Dynamic: Removes index zero from the array and shifts all other entries down by one unit.
• Unshift(a As Dynamic): Adds a new index zero to the array and shifts all other entries up by one unit.

7

• Delete(a As Integer) As Boolean: Deletes the indicated array entry and shifts all above entries down by
one unit.

• Count() As Integer Returns the index of the highest entry in the array plus one (i.e. the length of the array).
• Clear(): Deletes every entry in the array.
• Append(a As Object): Appends one roArray to another. If the passed roArray contains entries that were never

set to a value, they are not appended.
Note: The two appended objects must be of the same type.

The ifEnum interface provides the following:

• Reset(): Resets the position to the first element of enumeration.
• Next() As Dynamic: Returns a typed value at the current position and increment position.
• IsNext() As Boolean: Returns True if there is a next element.
• IsEmpty() As Boolean: Returns True if there is not an exact statement.

The ifArrayGet interface provides the following:

• GetEntry(a As Integer) As Dynamic: Returns an array entry of a given index. Entries start at zero. If an
entry that has not been set is fetched, Invalid is returned.

The ifArraySet interface provides the following:

• SetEntry(a As Integer, b As Dynamic): Sets an entry of a given index to the passed type value.

8

roAssociativeArray
An associative array (also known as a map, dictionary, or hash table) that allows objects to be associated with string keys.

This object is created with no parameters:

CreateObject("roAssociativeArray")

Interfaces: ifEnum, ifAssociativeArray

The ifEnum interface provides the following:

• Reset(): Resets the position to the first element of enumeration.
• Next() As Dynamic: Returns the typed value at the current position and increment position.
• IsNext() As Boolean: Returns True if there is a next element.
• IsEmpty() As Boolean: Returns True if there is not a next element.

The ifAssociativeArray interface provides the following:

• AddReplace(key As String, value As Object) As Void: Adds a new entry to the array, associating the
supplied object with the supplied string. Only one object may be associated with a string, so any existing object is
discarded.

• Lookup(key As String) As Object: Looks for an object in the array associated with the specified string. If
there is no object associated with the string, then this method will return Invalid.

• DoesExist(key As String) As Boolean: Looks for an object in the array associated with the specified
string. If there is no associated object, then False is returned. If there is such an object, then True is returned.

• Delete(key As String) As Boolean: Looks for an object in the array associated with the specified string. If
there is such an object, then it is deleted and True is returned. If not, then False is returned.

• Clear As Void: Removes all objects from the associative array.

9

• SetModeCaseSensitive(): Makes all subsequent actions case sensitive. All roAssociativeArray lookups
are case insensitive by default.

• LookupCi(a As String) As Dynamic: Looks for an object in the array associated with the specified string.
This method functions similarly to Lookup(), with the exception that key comparisons are always case insensitive,
regardless of case mode.

• Append(a As Object): Appends a second associative array to the first.

Example:

aa = CreateObject("roAssociativeArray")

aa.AddReplace("Bright", "Sign")

aa.AddReplace("TMOL", 42)

print aa.Lookup("TMOL")

print aa.Lookup("Bright")

The above script produces the following:

42

Sign

10

roBoolean
This is the object equivalent for the Boolean intrinsic type. It is useful in the following situations:

• When an object is needed instead of an intrinsic value. For example, if a Boolean is added to roList, it will be
automatically wrapped in an roBoolean object by the language interpreter. When a function that expects a
BrightScript component as a parameter is passed a Boolean, BrightScript automatically creates the equivalent
BrightScript component.

• When any object exposes the ifBoolean interface. That object can then be used in any expression that expects an
intrinsic value.

Interfaces: ifBoolean

The ifBoolean interface provides the following:

• GetBoolean() As Boolean

• SetBoolean(a As Boolean)

11

roByteArray
This object contains functions for converting strings to or from a byte array, as well as to or from ASCII hex or ASCII
base64. Note that if you are converting a byte array to a string, and the byte array contains a zero, the string conversion
will end at that point.

The byte array will automatically resize to become larger as needed. If you wish to disable this behavior, use the
SetResize() method. If an uninitialized index is read, Invalid is returned.

Since roByteArray supports the ifArray interface, it can be accessed with the array [] operator. The byte array is
always accessed as unsigned bytes while this interface is being used. This object also supports the ifEnum interface, and
so can be used with a FOR EACH statement.

Interfaces: ifByteArray, ifArray, ifArrayGet, ifEnum, ifArraySet

See roArray for a description of ifArray, ifArrayGet, ifEnum and ifArraySet.

The ifByteArray interface provides the following:

• WriteFile(file_path As String) As Boolean: Writes the bytes contained in the byte array to the
specified file. This method returns True if successful.

• WriteFile(file_path As String, start_index As Integer, length As Integer) As Boolean:
Writes a subset of the bytes contained in the byte array to the specified file. This method writes length bytes,
beginning at start_index of the byte array.

• ReadFile(file_path As String) As Boolean: Reads the specified file into the byte array. This operation
will discard any data currently contained in the byte array.

12

• ReadFile(file_path As String, start_index As Integer, length As Integer) As Boolean:
Reads a section of the specified file into the byte array. This method reads length bytes, beginning at
start_index of the file. This operation will discard any data currently contained in the byte array.

• AppendFile(file_path As String) As Boolean: Appends the contents of the byte array to the specified
file.

• SetResize(minimum_allocation_size As Integer, autoresize As Boolean): Expands the size of
the byte array to the minimum_allocation_size if it is less than the minimum_allocation_size. This
method also accepts a Boolean parameter that specifies whether the byte array should be resized automatically or
not.

• ToHexString() As String: Returns a hexadecimal string representation of the contents of the byte array.
Each byte is represented as two hex digits.

• FromHexString(hex_string As String): Writes the contents of the passed hexadecimal string to the byte
array. The passed string must contain an even number of hex digits. This operation will discard any data currently
contained in the byte array.

• ToBase64String() As String: Returns the contents of the byte array as a base64-formatted string.
• FromBase64String(base_64_string As String): Writes the contents of a valid base64-formatted string to

the byte array. This operation will discard any data currently contained in the byte array.
• ToAsciiString() As String: Returns the contents of the byte array as an ASCII-formatted string.
• FromAsciiString(a As String): Writes the contents of a valid ASCII-formatted string to the byte array. This

operation will discard any data currently contained in the byte array.
• GetSignedByte(index As Integer) As Integer: Returns the signed byte at the specified zero-based

index in the byte array. To read an unsigned byte within a byte array, use the ifArrayGet.GetEntry() method or the
[] array operator.

• GetSignedLong(index As Integer) As Integer: Retrieves the integer located at the specified long-word
index of the byte array. Note that this method cannot accept a byte index as its parameter.

• IsLittleEndianCPU() As Boolean: Returns True if the CPU architecture is little-endian.

13

roDouble, roIntrinsicDouble

Interfaces: ifDouble

The ifDouble interface provides the following:
GetDouble() As Double
SetDouble(a As Double)

14

roFunction

Interfaces: ifFunction

• GetSub() As Function

• SetSub(value As Function)

15

roGlobal
This object provides a set of standard, module-scope functions that are stored in the global object. If one of these global
functions is referenced, the compiler directs the runtime to call the appropriate global object member.

Note: Global trigonometric functions accept and return values in radians, not degrees.

Interfaces: ifGlobal

The ifGlobal interface provides the following:

• CreateObject(name As String) As Object: Creates a BrightScript object corresponding to the specified
class name. This method returns invalid if object creation fails. Some objects have optional parameters in their
constructor, which must be passed after the class name.
Example:

sw = CreateObject("roGpioControlPort")

serial = CreateObject("roSerialPort", 0, 9600)

• RestartScript(): Exits the current script. The system then scans for a valid autorun file to run.
• RestartApplication(): Restarts the BrightSign application.
• Sleep(milliseconds As Integer): Instructs the script to pause for a specified amount of time without

wasting CPU cycles. The sleep interval is specified in milliseconds.
• asc(letter As String) As Integer: Returns the ASCII code for the first character of the specified string. A

null-string argument will cause an error.
• chr(chr As Integer) As String: Returns a one-character string containing a character reflected by the

specified ASCII or control. For example, because quotation marks are normally used as string delimiters, you can
pass ASCII code 34 to this function to add quotes to a string.

• len(target_string As String) As Integer: Returns the number of characters in a string.

16

• str(value As Double) As String: Converts a specified float value to a string. This method also returns a
string equal to the character representation of a value. For example, if "A" is assigned a value of 58.5, then calling
str(A) will return "58.5" as a string.

• strI(value As Integer) As String: Converts a specified integer value to a string. This method also
returns a string equal to the character representation of a value. For example, if "A" is assigned a value of 58.5,
then calling stri(A) will return "58" as a string.

• val(target_string As String) As Double: Returns a number represented by the characters in the string
argument. This is the opposite of the str() function. For example, if "A" is assigned the string "58", and "B" is
assigned the string "5", then calling val(A+"."+B) will return the float value 58.5.

• abs(x As Double) As Double: Returns the absoule vale of the argument x.
• atn(x As Double) As Double: Returns the arctangent (in radians) of the argument x (i.e. Atn(x) returns "the

angle whose tangent is x"). To get the arctangent in degrees, multiply Atn(x) by 57.29578.
• csng(x As Integer) As Float: Returns a single-percision float representation of the argument x.
• cdbl(x As Integer) As Double: Returns a double-percision float representation of the argument x.
• cint(x As Double) As Integer: Returns an integer representation of the argument x by rounding to the

nearest whole number.
• cos(x As Double) As Double: Returns the cosine of the arugment x. The argument must be in radians. To

obtain the cosine of x when x is in degrees, use Cos(x*.01745329).
• exp(x As Double) As Double: Returns the natural exponential of x. This is the inverse of the log() function.
• fix(x As Double) As Integer: Returns a truncated representation of the argument x. All digits to the right of

the decimal point are removed so that the resultant value is an integer. For non-negative values of x, fix(x) is
equal to int(x). For negative values of x, fix(x) is equal to int(x)+1.

• int(x As Double) As Integer: Returns an integer representation of the argument x using the largest whole
number that is not greater than the argument. For example, int(2.2) returns 2, while fix(-2.5) returns -3.

• log(x As Double) As Double: Returns the natural logarithm of the argument x(i.e. loge(x)). This is the inverse
of the exp() function. To find the logarithm of a number to a base b, use the following formula:
 logb(x) = loge(x)/loge(b).

17

• sgn(x As Double) As Integer: Returns an integer representing how the float argument x is signed: -1 for
negative, 0 for zero, and 1 for positive.

• sgnI(x As Integer) As Integer: Returns an integer representing how the integer argument x is signed: -1
for negative, 0 for zero, and 1 for positive.

• sin(x As Double) As Double: Returns the sine of the argument x. The argument must be in radians. To
obtain the sine of x when x is in degrees, use sin(x*.01745329).

• tan(x As Double) As Double: Returns the tangent of the argument x. The argument must be in radians. To
obtain the tangent of x when x is in degrees, use tan(x*.01745329).

• sqr(x As Double) As Double: Returns the square root of the argument x. This function is the same as x^(1/2),
but calculates the result faster.

• Left(target_string As String, n As Integer) As String: Returns the first n characters of the
specified string.

• Right(target_string As String, n As Integer) As String: Returns the last n characters of the
specified string.

• StringI(n As Integer, character As Integer) As String: Returns a string composed of a character
symbol repeated n times. The character symbol is passed to the method as an ASCII code integer.

• String(n As Integer, character As String) As String: Returns a string composed of a character
symbol repeated n times. The character symbol is passed to the method as a string.

• Mid(target_string As String, start_position As Integer, length As Integer) As String:
Returns a substring of the target string. The first integer passed to the method specifies the starting position of the
substring, and the second integer specifies the length of the substring. The start position of a string begins with 1.

• instr(start_position As Integer, search_text As String, substring_to_find As String)

As Integer: Returns the position of a substring within a string. This function is case sensitive and returns 0 if the
specified substring is not found. The start position of a string begins with 1.

• GetInterface(object As Object, ifname As String) As Interface: Returns a value of the type
Interface. All objects have one or more interfaces. In most cases, you can skip interface specification when calling
an object component. This will not cause problems as long as the method names within a function are unique.

18

• Wait(timeout As Integer, port As Object) As Object: Instructs the script to wait on an object that
has an ifMessagePort interface. This method will return the event object that was posted to the message port. If the
timeout is specified as zero, Wait() will wait indefinitely; otherwise, Wait() will return Invalid after the specified
number of milliseconds if no messages have been received.
Example:

p = CreateObject("roMessagePort")

sw = CreateObject("roGpioControlPort")

sw.SetPort(p)

msg=wait(0, p)

print type(msg) ' should be roGpioButton

print msg.GetInt() ' button number

• ReadAsciiFile(file_path As String) As String: Reads the specified text file and returns it as a string.
• WriteAsciiFile(file_path As String, buffer As String) As Boolean: Creates a text file at the

specified file path. The text of the file is passed as the second parameter. This method cannot be used to edit files:
A preexisting text file will be overwritten if it has the same name and directory path as the one being created.

Note: The roCreateFile object provides more flexibility if you need to create or edit files.
• ListDir(path As String) As Object: Returns an roList object containing the contents of the specified

directory path. File names are converted to all lowercase.
• MatchFiles(path As String, pattern_in As String) As Object: Takes a directory to look in (it can

be as simple as "." or "/") and a pattern to be matched and then returns an roList containing the results. Each listed
result contains only the part of the filename that is matched against the pattern, not the full path. The match is only
applied in the specified directory; you will get no results if the pattern contains a directory separator. The pattern is
a case insensitive wildmat expression. It may contain the following special characters:

o ? -- Matches any single character.
o * -- Matches zero or more arbitrary characters.

19

o […]-- Matches any single character specified within the brackets. The closing bracket is treated as a
member of the character class if it immediately follows the opening bracket (i.e. "[]]" matches a single closed
bracket). Within this class, "-" can be used to specify a range unless it is the first or last character (e.g. "[A-
Cf-h"] is equivalent to "[ABCfgh]"). A character class may be negated by specifying "^" as the first character.
To match a literal of this character, place it elsewhere in the class.

Note: The special characters "?", "*", and "[" lose their function if preceded by a single "\", and a single "\" can
be matched using "\\".

• LCase(target_string As String) As String: Converts the specified string to all lower case.
• UCase(target_string As String) As String: Converts the specified string to all upper case.
• DeleteFile(file_path As String) As Boolean: Deletes the file at the specified file path. This method

returns False if the delete operation fails or if the file does not exist.
• DeleteDirectory(diretory As String) As Boolean: Deletes the specified directory. This method will

recursively delete any files and directories that are necessary for removing the specified directory. This method
returns False if it fails to delete the directory, but it may still delete some of the nested files or directories.

• CreateDirectory(directory As String) As Boolean: Creates the specified directory. Only one directory
can be created at a time. This method returns True upon success and False upon failure.

• RebootSystem(): Causes a soft reboot.
• ShutdownSystem()

• UpTime(dummy As Integer) As Float: Returns the uptime of the system (in seconds) since the last reboot.
• FormatDrive(drive As String, fs_type As String) As Boolean: Formats the specified drive using

one of the file systems listed below. This function returns True upon success and False upon failure:
o vfat (DOS/Windows file system): Readable and writable by Windows, Linux, and MacOS.
o ext2 (Linux file system): Writable by Linux and readable by Windows and MacOS with additional software.
o ext3 (Linux file system): Writable by Linux and readable by Windows and MacOS with additional software.

This file system uses journaling for additional reliability.
• EjectDrive(drive As String) As Boolean: Ejects the specified drive (e.g. "SD:") and returns True if

successful. If the script is currently accessing files from the specified drive, the ejection process will fail.

20

• CopyFile(source As String, destination As String) As Boolean: Copies the file at the specified
source file-path name to the specified destination file-path name. The function returns True if successful and False
in the event of failure.

• MoveFile(a As String, b As String) As Boolean: Moves the specified source file to the specified
destination. The function returns True if successful and False in the event of failure.

Note: Both path names must be on the same drive.
• strtoi(target_string As String) As Integer: Converts the target string to an integer. Any non-integer

characters (including decimal points and spaces), and any numbers to the right of a non-integer character, will not
be part of the integer output.

• rnd(a As Dynamic) As Dynamic

• RunGarbageCollector() As roAssociativeArray: Destroys objects that are currently in a state of circular
reference counting. BrightScript normally removes any objects that become unreferenced as part of its automated
garbage collection algorithm. However, objects that reference each other will never reach a reference count of zero,
and will need to be destroyed manually using this method. This method is useful when destroying old presentation
data structures and generating a new presentation. This method returns an associative array outlining the results of
the garbage-collection process.

• GetDefaultDrive() As String: Returns the current default drive complete with a trailing slash. When running
autorun.brs, the drive containing the autorun is designated as the current default.

• SetDefaultDrive(a As String): Sets the current default drive, which does not need to include a trailing
slash. This method does not fail; however, if the specified default drive does not exist, it will not be possible to
retrieve anything.

• EnableZoneSupport(a As Boolean)

• EnableAudioMixer(a As Boolean)

• Pi() As Double: Returns the value of pi as a double-precision floating-point number.
• ParseJson(json_string As String) As Object: Parses a string formatted according to the RFC4627

standard and returns an equivalent BrightScript object, which can consist of the following: Booleans, integers,

21

floating point numbers, strings, roArray objects, and roAssociativeArray objects. The ParseJson() method has
the following properties:

o Invalid will be returned if the string is not syntactically correct.
o Any roAssociativeArray objects that are returned will be case sensitive.
o An error will be returned if an roArray or roAssociativeArray is nested more than 256 levels deep.

Example: The following script demonstrates how to use ParseJson() to process a JSON object containing the
titles and URLs of a set of images.

JSON Script
{

 "photos" : [

 {

 "title" : "View from the hotel",

 "url" : "http://example.com/images/00012.jpg"

 },

 {

 "title" : "Relaxing at the beach",

 "url" : "http://example.com/images/00222.jpg"

 },

 {

 "title" : "Flat tire",

 "url" : "http://example.com/images/00314.jpg"

 }

]

}

BrightScript

http://example.com/images/00012.jpg�
http://example.com/images/00222.jpg�
http://example.com/images/00314.jpg�

22

searchRequest = CreateObject("roUrlTransfer")

searchRequest.SetURL("http://api.example.com/services/rest/getPhotos")

response = ParseJson(searchRequest.GetToString())

For Each photo In response.photos

 GetImage(photo.title, photo.url)

End For

• FormatJson(json As roAssociativeArray, flags As Integer) As String: Converts an associative
array to a JSON string (i.e. formatted according to the RFC4627 standard). The following are supported data types:
Boolean, Integer, Float, String, roArray, and roAssociativeArray. If the flags parameter is set to 0 or not specified,

non-ASCII characters are escaped in the output string as “\uXXXX”, where “XXXX” is the hexadecimal
representation of the Unicode character value. If the flags parameter is set to 1, non-ASCII characters are not

escaped. If arrays or associative arrays are nested more than 256 levels deep, an error will occur. If an error
occurs, an empty string will be returned.

http://api.example.com/services/rest/getPhotos�

23

roInt, roFloat, roString
The intrinsic types roInt32, roFloat, and roString have an object and interface equivalent. These are useful in the following
situations:

• An object is needed instead of a typed value. For example, roList maintains a list of objects.
• If any object exposes the ifInt, ifFloat, or ifString interfaces, that object can be used in any expression that expects

a typed value. For example, an roTouchEvent can be used as an integer whose value is the userid of the
roTouchEvent.

Note: If "o" is an roInt, then these statements have the following effects:
o print o: Prints o.GetInt()
o i%=o: Assigns the integer i% the value of o.GetInt()
o k=o: Presumably k is typeOmatic, so it becomes another reference to the roInt o
o o=5: This is NOT the same as o.SetInt(5). Instead it releases o, changes the type of o to roINT32 (o is

typeOmatic), and assigns it to 5.

When a function that expects a BrightScript Object as a parameter is passed an int, float, or string, BrightScript
automatically creates the equivalent object.

Interfaces: ifInt, ifIntOps, ifFloat, ifString, ifStringOps

roInt contains the ifInt interface, which provides the following:

• GetInt() As Integer

• SetInt(value As Integer) As Void

24

roInt also contains the ifIntOps interface, which provides the following:
• ToStr() As String

roFloat contains the ifFloat interface, which provides the following:
• GetFloat() As Float
• SetFloat(value As Float) As Void

roString contains the ifString interface, which provides the following:

• GetString() As String

• SetString(value As String) As Void

roString also contains the ifStringOps interface, which provides the following:
Note: The function indexes of ifStringOps methods start at zero, while the function indexes of global methods start at
one.
• SetString(str As String, str_len As Integer): Sets the string using the specified string and string-

length values.
• AppendString(str As String, str_len As Integer): Appends the string using the specified string and

string-length values. This method modifies itself—this can cause unexpected results when you pass an intrinsic
string type, rather than a string object.
Example:

x="string"

x.ifstringops.appendstring("ddd",3)

print x 'will print 'string'

y=box("string")

y.ifstringops.appendstring("ddd",3)

print y 'will print 'stringddd'

25

• Len() As Integer

• GetEntityEncode() As String

• Tokenize(delim As String) As Object

• Trim() As String

• ToInt() As Integer

• ToFloat() As Float

• Left(chars As Integer) As String

• Right(chars As Integer) As String

• Mid(start_index As Integer) As String

• Mid(start_index As Integer, chars As Integer) As String

• Instr(substring As String) As Integer

• Instr(start_index As Integer, substring As String) As Integer

Example:

BrightScript> o=CreateObject("roInt")

BrightScript> o.SetInt(555)

BrightScript> print o

 555

BrightScript> print o.GetInt()

 555

BrightScript> print o-55

 500

26

Example: An integer value of 5 is converted to type roInt automatically because the AddTail() method expects a
BrightScript Object as its parameter.

BrightScript> list=CreateObject("roList")

BrightScript> list.AddTail(5)

BrightScript> print type(list.GetTail())

Example: Here the ListDir() method returns an roList object containing roString objects:

BrightScript> l=ListDir("/")

BrightScript> for i=1 to l.Count():print l.RemoveHead():next

test_movie_3.vob

test_movie_4.vob

test_movie_1.vob

test_movie_2.vob

27

roList
This object functions as a general-purpose, doubly linked list. It can be used as a container for arbitrary-length lists of
BrightSign Objects. The array operator [] can be used to access any element in an ordered list.

Interfaces: ifList, ifEnum, ifArray, ifArrayGet, ifArraySet

The ifList interface provides the following:

• Count() As Integer: Returns the number of elements in the list.
• ResetIndex() As Boolean: Resets the current index or position in the list to the head element.
• AddTail(obj As Object) As Void: Adds a typed value to the tail of the list.
• AddHead(obj As Object) As Void: Adds a typed value to the head of the list.
• RemoveIndex() As Object: Removes an entry from the list at the current index or position and increments the

index or position in the list. It returns Invalid when the end of the list is reached.
• GetIndex() As Object: Retrieves an entry from the list at the current index or position and increments the

index or position in the list. It returns Invalid when the end of the list is reached.
• RemoveTail() As Object: Removes the entry at the tail of the list.
• RemoveHead() As Object: Removes the entry at the head of the list.
• GetTail() As Object: Retrieves the entry at the tail of the list and keeps the entry in the list.
• GetHead() As Object: Retrieves the entry at the head of the list and keeps the entry in the list.
• Clear(): Removes all elements from the list.

The ifEnum interface provides the following:
• Reset(): Resets the position to the first element of enumeration.
• Next() As Dynamic: Returns the typed value at the current position and increment position.
• IsNext() As Boolean: Returns True if there is a next element.
• IsEmpty() As Boolean: Returns True if there is not a next element.

28

The ifArray interface provides the following:
• Peek() As Dynamic: Returns the last (highest index) array entry without removing it.
• Pop() As Dynamic: Returns the last (highest index) entry and removes it from the array.
• Push(a As Dynamic): Adds a new highest index entry to the end of the array
• Shift() As Dynamic: Removes index zero from the array and shifts all other entries down by one unit.
• Unshift(a As Dynamic): Adds a new index zero to the array and shifts all other entries up by one unit.
• Delete(a As Integer) As Boolean: Deletes the indicated array entry and shifts all above entries down by

one unit.
• Count() As Integer Returns the index of the highest entry in the array plus one (i.e. the length of the array).
• Clear(): Deletes every entry in the array.
• Append(a As Object): Appends one roArray to another. If the passed roArray contains entries that were never

set to a value, they are not appended.
Note: The two appended objects must be of the same type.

The ifArrayGet interface provides the following:

• GetEntry(a As Integer) As Dynamic: Returns an array entry of a given index. Entries start at zero. If an
entry that has not been set is fetched, Invalid is returned.

The ifArraySet interface provides the following:

• SetEntry(a As Integer, b As Dynamic): Sets an entry of a given index to the passed type value.

Example:

list = CreateObject(“roList”)

list.AddTail(“a”)

list.AddTail(“b”)

list.AddTail(“c”)

29

list.AddTail(“d”)

list.ResetIndex()

x= list.GetIndex()

while x <> invalid

 print x

 x = list.GetIndex()

end while

print list[2]

30

roRegex
This object allows the implementation of the regular-expression processing provided by the PCRE library.

This object is created with a string to represent the "matching-pattern" and a string to indicate flags that modify the
behavior of one or more matching operations:

CreateObject("roRegex", "[a-z]+", "i")

The match string (in the example above, "[a-z]+", which matches all lowercase letters) can include most Perl
compatible regular expressions found in the PCRE documentation.

This object supports any combination of the following behavior flags (in the example above, "i", which can be modified to
match both uppercase and lowercase letters):

• "i": Case-insensitive match mode.
• "m": Multiline mode. The start-line ("^") and end-line ("$") constructs match immediately before or after any

newline in the subject string. They also match at the absolute beginning or end of a string.
• "s": Dot-all mode, which includes a newline in the ".*" regular expression. This modifier is equivalent to "/s" in

Perl.
• "x": Extended mode, which ignores whitespace characters except when escaped or inside a character class. This

modifier is equivalent to "/x" in Perl.

Interfaces: ifRegex

The ifRegex interface provides the following:

• IsMatch(a As String) As Boolean: Returns True if the string is consistent with the matching pattern.

http://pcre.org/�

31

• Match(a As String) As roArray: Returns an roArray of matched substrings from the string. The entire
match is returned in the form array[0].This will be the only entry in the array if there are no parenthetical
substrings. If the matching pattern contains parenthetical substrings, the relevant substrings will be returned as an
array of length n+1, where array[0] is the entire match and each additional entry in the array is the match for
the corresponding parenthetical expression.

• Replace(a As String, b As String) As String: Replaces the first occurrence of a match to the
matching pattern in the string with the subset. The subset may contain numbered back-references to parenthetical
substrings.

• ReplaceAll(a As String, b As String) As String: Performs a global search and replace.
• Split(a As String) As roList: Uses the matching pattern as a delimiter and splits the string on the

delimiter boundaries. The function returns an roList of strings that were separated by the matching pattern in the
original string.

32

roXMLElement
This object is used to contain an XML tree.

The roXMLElement object is created with no parameters:

CreateObject("roXMLElement")

The following examples illustrate how XML elements are parsed in BrightScript:

<tag1>This is example text</tag1>

Name = tag1
Attributes = Invalid
Body = roString containing "This is example text"

<tag2 caveman="barney"/>

Name = tag2
Attributes = roAssociativeArray with one entry, {caveman, barney}
Body = Invalid

If the tag contains other tags, the body will be of the type roXMLList.

Example: To generate XML content, create an roXMLElement and call the SetBody() and SetName() methods to
build it, then call the GenXML() method to generate it.

33

root.SetName("myroot")

root.AddAttribute("key1","value1")

root.AddAttribute("key2","value2")

ne=root.AddBodyElement()

ne.SetName("sub")

ne.SetBody("this is the sub1 text")

ne=root.AddBodyElement()

ne.SetName("subelement2")

ne.SetBody("more sub text")

ne.AddAttribute("k","v")

ne=root.AddElement("subelement3")

ne.SetBody("more sub text 3")

root.AddElementWithBody("sub","another sub (#4)")

PrintXML(root, 0)

print root.GenXML(false)

Interfaces: ifXMLElement

The ifXMLElement interface provides the following:

• GetBody() As Object

• GetAttributes() As Object

• GetName() As String

• GetText() As String

• GetChildElements() As Object

• GetNamedElements(a As String) As Object

• GetNamedElementsCi(a As String) As Object

34

• SetBody(a As Object): Generates an roXMLList for the body if needed. The method then adds the passed
item (which should be an roXMLElement tag).

• AddBodyElement() As Object

• AddElement(a As String) As Object

• AddElementWithBody(a As String, b As Object) As Object

• AddAttribute(a As String, b As String)

• SetName(a As String)

• Parse(a As String) As Boolean: Parses the XML content passed to it. In the event of failure, this method
returns False. However, it also populates roXMLElement with whatever text could be successfully parsed. To avoid
passing along erroneous strings, it is always best to have the script check the return value of Parse() before
using them.

• GenXML(a As Object) As String: Generates XML content. This method takes a single Boolean parameter,
indicating whether or not the XML should have an <?xml …> tag at the top.

• Clear()

• GenXMLHdr(a As String) As String

• IsName(a As String) As Boolean

• HasAttribute(a As String) As Boolean

• ParseFile(a As String) As Boolean

Example: The following is an example subroutine to print out the contents of an roXMLElement tree:

PrintXML(root, 0)

Sub PrintXML(element As Object, depth As Integer)

 print tab(depth*3);"Name: ";element.GetName()

 if not element.GetAttributes().IsEmpty() then

 print tab(depth*3);"Attributes: ";

 for each a in element.GetAttributes()

35

 print a;"=";left(element.GetAttributes()[a], 20);

 if element.GetAttributes().IsNext() then print ", ";

 end for

 print

 end if

 if element.GetText()<>invalid then

 print tab(depth*3);"Contains Text: ";left(element.GetText(), 40)

 end if

 if element.GetChildElements()<>invalid

 print tab(depth*3);"Contains roXMLList:"

 for each e in element.GetChildElements()

 PrintXML(e, depth+1)

 end for

 end if

 print

end sub

36

roXMLList

Interfaces: ifList, ifEnum, ifArray, ifArrayGet, ifArraySet, ifXMLList

The ifList interface provides the following:

• GetHead() As Dynamic: Retrieves the entry at the head of the list and keeps the entry in the list.
• GetTail() As Dynamic: Retrieves the entry at the tail of the list and keeps the entry in the list.
• RemoveHead() As Dynamic: Removes the entry at the head of the list.
• RemoveTail() As Dynamic: Removes the entry at the tail of the list.
• GetIndex() As Dynamic: Retrieves an entry from the list at the current index or position and increments the

index or position in the list. It returns Invalid when the end of the list is reached.
• RemoveIndex() As Dynamic: Removes an entry from the list at the current index or position and increments

the index or position in the list. It returns Invalid when the end of the list is reached.
• AddHead(a As Dynamic): Adds a typed value to the head of the list.
• AddTail(a As Dynamic): Adds a typed value to the tail of the list.
• ResetIndex() As Boolean: Resets the current index or position in the list to the head element.
• Count() As Integer: Returns the number of elements in the list.
• Clear(): Removes all elements from the list.

The ifEnum interface provides the following:
• Reset(): Resets the position to the first element of enumeration.
• Next() As Dynamic: Returns the typed value at the current position and increment position.
• IsNext() As Boolean: Returns True if there is a next element.
• IsEmpty() As Boolean: Returns True if there is not a next element.

37

The ifArray interface provides the following:
• Peek() As Dynamic: Returns the last (highest index) array entry without removing it.
• Pop() As Dynamic: Returns the last (highest index) entry and removes it from the array.
• Push(a As Dynamic): Adds a new highest index entry to the end of the array
• Shift() As Dynamic: Removes index zero from the array and shifts all other entries down by one unit.
• Unshift(a As Dynamic): Adds a new index zero to the array and shifts all other entries up by one unit.
• Delete(a As Integer) As Boolean: Deletes the indicated array entry and shifts all above entries down by

one unit.
• Count() As Integer Returns the index of the highest entry in the array plus one (i.e. the length of the array).
• Clear(): Deletes every entry in the array.
• Append(a As Object): Appends one roArray to another. If the passed roArray contains entries that were never

set to a value, they are not appended.
Note: The two appended objects must be of the same type.

The ifArrayGet interface provides the following:
• GetEntry(a As Integer) As Dynamic: Returns an array entry of a given index. Entries start at zero. If an

entry that has not been set is fetched, Invalid is returned.

The ifArraySet interface provides the following:

• SetEntry(a As Integer, b As Dynamic): Sets an entry of a given index to the passed type value.

The ifXMLList interface provides the following:

• GetAttributes() As Object

• GetText() As String

• GetChildElements() As Object

38

• GetNamedElements(a As String) As Object: Returns a new XMLList that contains all roXmlElements that
match the name of the passed element. This action is the same as using the dot operator on an roXmlList.

• GetNamedElementsCi(a As String) As Object

• Simplify() As Object: Returns an roXmlElement if the list contains exactly one element. Otherwise, it will
return itself.

39

PRESENTATION AND WIDGET OBJECTS

roAudioEventMx
The roAudioPlayerMx object can generate roAudioEventMx messages with the following values:

• 8 EVENT_MEDIAENDED

• 14 EVENT_OVERLAY_MEDIAENDED

• 16 EVENT_MEDIAERROR

• 17 EVENT_OVERLAY_MEDIAERROR

"Media ended" events are sent when a track finishes and there are no more queued tracks for the player, while "Media
error" events are sent when a queued file is not found (e.g. when it does not exist).

Interfaces: ifInt, ifSourceIdentity, ifAudioUserData

The ifInt interface provides the following:

• GetInt() As Integer

• SetInt(a As Integer)

The ifSourceIdentity interface provides the following:

• GetSourceIdentity() As Integer

• SetSourceIdentity() As Integer

The ifAudioUserData interface provides the following:

• GetSourceIdentity() As Integer

• SetSourceIdentity() As Integer

40

roAudioOutput
This object allows individual control of audio outputs on the player.

Object Creation: The roAudioOutput object requires a single output parameter upon creation.

CreateObject("roAudioOutput", output As String)

The audio output parameter can take the following strings:

• Analog

• SPDIF

• HDMI

• USB

• NONE

These strings can be extended if future BrightSign players have multiple channels of the same type of audio output. For
example, Analog could be extended to Analog:1 or Analog:0-2.

You can create any number of roAudioOutput objects. There can be multiple instances of this object that represent the
same audio output, but in these cases one object will override another.

Interfaces: ifAudioOutput

The ifAudioOuput interface provides the following:

• SetVolume(a As Integer) As Boolean: Sets the volume of the specified output as a percentage
represented by an integer between 0 and 100.

• SetMute(a As Boolean) As Boolean: Mutes the specified output if True. This method is set to False by
default.

41

• GetOutput() As String: Returns the string with which the roAudioOutput object was created.
• SetAudioDelay(delay_in_milliseconds As Integer) As Boolean: Delays the audio for a specific

audio ouput by lagging decoded samples before they reach that output. Delays are limited to 150ms or less.
Currently, the system software only supports positive delays; therefore, if you need to set the audio ahead of the
video, you will need to use SetVideoDelay() instead.

The SetVolume and SetMute methods work in conjunction with the volume and mute functionality offered
by roAudioPlayer. The roAudioPlayer volume settings affect the audio decoder volume. The audio stream is then sent to
the assigned outputs, which have an additional level of volume control enabled by roAudioOutput.

Note: To control which audio outputs connect to audio player outputs generated by roAudioOutput, use the
SetPcmAudioOutputs and SetCompressedAudioOutputs methods, which can be used for roVideoPlayer and
roAudioPlayer. See the roAudioPlayer entry for further explanation of these methods.

The roAudioOutput object affects the absolute volume (as well as mute settings) for an audio output. If two players are
streaming to the same output, both will be affected by any settings implemented through roAudioOutput.

42

roAudioPlayer
An audio player is used to play back audio files using the generic ifMediaTransport interface. If the message port is set,
the object will send events of the type roAudioEvent. All object calls are asynchronous. In other words, audio playback is
handled in a different thread from the script. The script may continue to run while audio is playing.

Interfaces: ifIdentity, ifSetMessagePort, ifMediaTransport, ifAudioControl.

The ifIdentity interface provides the following:

• GetIdentity() As Integer

The ifSetMessagePort interface provides the following:

• SetPort(As Object) As Void

• SetPort(a As Object)

See roVideoPlayer for a description of ifMediaTransport.

The ifAudioControl interface provides the following:
• SetPcmAudioOutputs(array As Object) As Boolean: Determines which PCM audio outputs are

connected to audio player outputs generated by roAudioOutput. This method takes as its argument one or more
outputs in the form of an roArray of roAudioOutput parameters.

• SetCompressedAudioOutputs(array As Object) As Boolean: Determines which compressed audio
outputs are connected to audio player outputs generated by roAudioOutput. This method takes as its argument one
or more outputs in the form of an roArray of roAudioOutput parameters.

Note: When one or both of these output methods are called, they will override the settings of the following
ifAudioControl methods: SetAudioOutput(), MapStereoOutput(), SetUsbAudioPort(),
MapDigitalOutput().

43

• SetMultichannelAudioOutputs(array As Object) As Boolean:
• SetAudioOutput(audio_output As Integer) As Boolean

• SetAudioMode(audio_mode As Integer) As Boolean

• MapStereoOutput(mapping As Integer) As Boolean

• MapDigitalOutput(mapping As Integer) As Boolean

Note: MapDigitalOutput is not available on the HD2000.
• SetVolume(volume As Integer) As Boolean

• SetChannelVolumes(channel_mask As Integer, volume As Integer) As Boolean

• SetUsbAudioPort(a As Integer) As Boolean

• SetSpdifMute(a As Boolean) As Boolean

• StoreEncryptionKey(a As String, b As String) As Boolean

• StoreObfuscatedEncryptionKey(a As String, b As String) As Boolean

• SetStereoMappingSpan(a As Integer) As Boolean

• ConfigureAudioResources() As Boolean

• SetAudioStream(stream_index As Integer) As Boolean

• SetAudioDelay(delay_in_milliseconds As Integer) As Boolean: Adds a presentation time stamp
(PTS) offset to the audio. This makes it possible to adjust for file multiplexing differences. Delays are limited to
150ms or less. Currently, the system software only supports positive delays; therefore, if you need to set the audio
ahead of the video, you will need to use SetVideoDelay() instead.

• SetVideoDelay(delay_in_milliseconds As Integer) As Boolean: Adds a presentation time stamp
(PTS) offset to the video. This makes it possible to adjust for file multiplexing differences. Delays are limited to
150ms or less.

Note: The following "Aux" functions are implemented only on the HD2000
• SetAudioOutputAux(audio_output As Integer) As Boolean

• SetAudioModeAux(audio_mode As Integer) As Boolean

• MapStereoOutputAux(mapping As Integer) As BooleanSetVolumeAux(volume As Integer) As
Boolean

44

• SetChannelVolumesAux(channel_mask As Integer, volume As Integer) As Boolean

• SetAudioStreamAux(stream_index As Integer) As Boolean

A call to video.Stop is needed before changing the audio output when a video file is playing or has played.

Example: This example shows how to use the SetPcmAudioOutputs and SetCompressedAudioOutputs methods in
conjunction with roAudioOutput. The video player is configured to output decoded audio to the analog output or
compressed audio to the HDMI and SPDIF outputs.

ao1=CreateObject("roAudioOutput", "Analog")

ao2=CreateObject("roAudioOutput", "HDMI")

ao3=CreateObject("roAudioOutput", "SPDIF")

v1=CreateObject("roVideoPlayer")

v1.SetPcmAudioOutputs(ao1)

--or--

ar = CreateObject("roArray", 2, true)

ar[0] = ao2

ar[1] = ao3

v1.SetCompressedAudioOutputs(ar)

Note: In most cases, rerouting audio outputs during audio/video playback will cause playback to stop. The system
software will still be responsive, so you can use commands to exit playback during or following an audio output
modification.

45

audio_output values
 0 – Analog audio
 1 – USB audio
 2 – Digital audio, stereo PCM
 3 – Digital audio, raw AC3
 4 – Onboard analog audio with HDMI mirroring raw AC3

digital audio values
 0 – Onboard HDMI
 1 – SPDIF from expansion module

audio_mode values: Options 0 and 1 only apply to video files; while 2 applies to all audio sources.
 0 – AC3 Surround
 1 – AC3 mixed down to stereo
 2 – No audio
 3 – Left
 4 – Right

mapping values: Used to select which analog output to use if audio_output is set to 0.
 0 – Stereo audio is mapped to onboard analog output
 1 – Stereo audio is mapped to expansion module leftmost output
 2 – Stereo audio is mapped to expansion module middle output
 3 – Stereo audio is mapped to expansion module rightmost output

46

set_volume: Volume functions as a percentage and therefore takes a value between 0-100. The volume value is clipped
prior to use (i.e. SetVoume(101) will set the volume to 100 and return True). The volume is the same for all mapped
outputs and USB/SPDIF/analog.
Note: Separate volume levels are stored for roAudioPlayer and roVideoPlayer.

set_channel_volumes: You can control the volume of individual audio channels. This volume command takes a hex
channel mask, which determines the channels to apply the volume to, and a level, which is a percentage of the full scale.
The volume control works according to audio channel rather than the output. The channel mask is a bit mask with the
following bits for MP3 output:

• &H01 Left
• &H02 Right
• &H03 Both left and right

Example: This code sets audio output to the rightmost expansion moduleaudio port.

video = CreateObject("roVideoPlayer")

video.SetAudioOutput(0)

video.MapStereoOutput(3)

Example: This code sets the volume level for individual channels.

audio = CreateObject("roAudioPlayer")

audio.SetChannelVolumes(&H01, 60) ‘left channel to 60%

audio.SetChannelVolumes(&H02, 75) ‘right channel to 75%

47

audio.SetChannelVolumes(&H03, 65) ‘all channels to 65%

Playing Multiple Audio Files Simultaneously
Multiple MP3 files, as well as the audio track of a video file, can be played to any combination of the following:

• Analog outputs
• SPDIF / HDMI
• USB

Only a single file can be sent to an output at any given time. For example, two roAudioPlayers cannot simultaneously play
to the SPDIF output. The second one to attempt a PlayFile will get an error. To free an output, the audio or video stream
must be stopped (using the ifMediaTransport Stop or StopClear calls).

Notes on multiple audio-file functionality:

• The onboard analog audio output and HDMI output are clocked by the same sample-rate clock. Therefore, if
different content is being played out of each, the content must have the same sample rate.

• Currently, only a single set of USB speakers is supported.
• Each audio and video stream played consumes some of the finite CPU resources. The amount consumed depends

on the bitrates of the streams. Testing is the only way to determine whether a given set of audio files can be played
at the same time as a video. The maximum recommended usage is a 16Mbps video file with three simultaneous
MP3 160kbps streams.

Example: This code plays a video with audio over HDMI and an MP3 file to the onboard analog port.

video=CreateObject("roVideoPlayer")

48

video.SetAudioOutput(3)

video.PlayFile("video.mpg")

audio=CreateObject("roAudioPlayer")

audio.MapStereoOutput(0)

audio.PlayFile("audio.mp3")

49

roAudioPlayerMx
This object allows you to mix audio files, as well as HLS audio streams. Each roAudioPlayerMx object conatins two
internal audio players: The main audio playlist consists of queued audio tracks that play sequentially, while the audio
overlay plays files on top of the main playlist. A fade will not occur if it is called while an overlay is playing, but the next
audio track will start playing as expected.

Tracks are queued to PlayFile with their fade parameters specified in an associative array. These are the parameters
you can pass to PlayFile:

• Filename: The filename of the track
• FrontPorch: The length, in milliseconds (ms), to skip from the start of the track. This value is 0 by default.
• FadeOutLocation: The location, in milliseconds (ms), of the fade out relative to the value of the FrontPorch. If the

value is 0 (which is the default setting), and the FadeOutLength has a non-zero value, then the fade out is
calculated back from the end of the file.

• FadeOutLength: The length of the fade out in milliseconds (ms). This value is 0 by default.
• SegueLocation: The location, in milliseconds (ms), of the event that triggers the next audio file to play. This

location is relative to the first audio file that is played. If the SegueLocation parameter is not passed to PlayFile,
the value defaults to the FadeOutLocation.

• BackPorchLocation: The location, in milliseconds (ms), of the termination point for the audio track. This location is
relative to the first audio file that is played. If the BackPorchLocation parameter is not passed to PlayFile, the
audio file plays to the end. The value is 0 by default, which disables the back porch.

• TrackVolume: The relative volume of of the audio track, measured as a percentage. Specify the percentage using
values between 0 and 100.

• EventID: The ID for an audio event
• EventTimeStamp: The timestamp for the audio event. There can only be one event per audio file.
• QueueNext: The queuing of an audio track. Set the parameter value to 1 to queue an audio file to play after the

current track.

50

• Overlay: The overlay specification of an audio track. Set the parameter value to 1 to fade down the main audio
playlist while playing the audio track as an overaly. Overlays have additional parameters:

o AudioBedLevel: The volume-level percentage of the main audio playlist while the overlay is playing.
Specify the percentage using values between 0 and 100.

o AudioBedFadeOutLength: The fade-out length of the main audio playlist.
o AudioBedFadeInLength: The fade-in lenth for the length of the underlying audio track once the segue is

triggered.
• FadeCurrentPlayNext: A fade command. Set the parameter value to 1 to fade out the current main audio playlist

track and fade in the designated audio file.
• CrossfadeCurrentPlayNext: A crossfade command. Set the parameter value to 1 to force an immediate crossfade

between the current main audio playlist track and the designated audio file.
• UserString: A string that can be set to a unique value for each roAudioPlayerMx instance. This string is returned

with every event generated by the instance. Since all current platforms can support multiple roAudioPlayerMx
instances running at the same time, the UserString allows the script to distinguish between event returns.

The following diagram illustrates how some of these timing parameters work together:

51

Example: The following example illustrates a simple crossfade between audio tracks.

a = CreateObject("roAudioPlayerMx")

track1 = CreateObject("roAssociativeArray")

track1["Filename"] = "file1.mp3"

track1["FadeInLength"] = 4000

track1["FadeOutLength"] = 4000

track1["QueueNext"] = 1

track2 = CreateObject("roAssociativeArray")

track2["Filename"] = "file2.mp3"

track2["FadeInLength"] = 4000

track2["FadeOutLength"] = 4000

track2["QueueNext"] = 1

a.PlayFile(track1)

a.PlayFile(track2)

Interfaces: ifMediaTransport, ifSetMessagePort, ifAudioControl, ifSetMessagePort, ifAudioControlMx

The ifMediaTransport interface provides the following:

• PlayFile(a As Object) As Boolean

• Stop() As Boolean

• Play() As Boolean

• Pause() As Boolean

• Resume() As Boolean

52

• SetLoopMode(a As Boolean) As Boolean

• GetPlaybackStatus() As Object

The ifSetMessagePort interface provides the following:

• SetPort(a As Object)

The ifAudioControl interface provides the following:

• MapStereoOutput(a As Integer) As Boolean

• SetVolume(a As Integer) As Boolean

• SetChannelVolumes(a As Integer, b As Integer) As Boolean

• SetAudioOutput(a As Integer) As Boolean

• SetAudioMode(a As Integer) As Boolean

• SetAudioStream(a As Integer) As Boolean

• SetUsbAudioPort(a As Integer) As Boolean

• SetSpdifMute(a As Boolean) As Boolean

• MapDigitalOutput(a As Integer) As Boolean

• StoreEncryptionKey(a As String, b As String) As Boolean

• StoreObfuscatedEncryptionKey(a As String, b As String) As Boolean

• SetStereoMappingSpan(a As Integer) As Boolean

• ConfigureAudioResources() As Boolean

• SetPcmAudioOutputs(a As Object) As Boolean

• SetCompressedAudioOutputs(a As Object) As Boolean

The ifIdentity interface provides the following:

• GetIdentity() As Integer

The ifAudioControlMx interface provides the following:

53

• SetDecoderCount(a As Integer) As Boolean

54

roCanvasWidget
This object composites background color, text, and images into a single rectangle, allowing you to layer images on a z-
axis.

Object Creation: Like other widgets, roCanvasWidget is created with an roRectangle to set its size and position on the
screen.

CreateObject ("roCanvasWidget", r As roRectangle) As Object

Interfaces: ifCanvasWidget

The ifCanvasWidget interface provides the following:

• Hide() As Boolean: Hides the widget.

• Show() As Boolean: Shows the widget.

• SetRectangle(r As roRectangle) As Boolean: Changes the size and positioning of the widget rectangle

using the passed roRectangle object.

• SetLayer(content As Object, z-level As Integer) As Boolean: Sets the contents of a layer within

the widget. The lowest z-level is drawn first, and the highest z-level is drawn last. The object content is described

below.

• ClearLayer(int z-level) As Boolean: Clears the specified layer.

• Clear() As Boolean: Clears all of the layers.

• EnableAutoRedraw(enable As Boolean) As Boolean: Enables or disables the automatic redrawing of the

widget.

55

o When this function is enabled, each call to SetLayer, ClearLayer, or Clear results in a redraw. If you

need to change multiple layers, then you should disable auto redraw while calling the SetLayer function.

o SetLayer enables or disables redrawing of the widget when layer content is changed. When auto-redraw is

enabled, each call to SetLayer, ClearLayer, or Clear results in a redraw. To batch multiple updates

together, you should first suspend drawing using EnableAutoRedraw(false), then make the changes to

the content, and finally re-enable drawing using EnableAutoRedraw(true). The redraw happens in a

separate thread, so EnableAutoRedraw returns almost immediately.

Object Content
The content specified in each layer can consist of one or more objects. Each object is defined by an roAssociativeArray.

If there is more than one object, then each is placed into an roArray prior to passing to the SetLayer function. Currently,

there are four object types:

1. Background color

• color: The #[aa]rrggbb hex value of the background color

• targetRect: A target rectangle, which is another roAssociativeArray consisting of x, y, w, and h values. These

values are relative to the top left corner of the widget.

2. Text

• text: A string of text to display

• targetRect: The rectangle in which the text is displayed

• textAttrs: An roAssociativeArray containing attributes to be applied to the text. The attributes can be any of the

following:

56

o font: Small/medium/large/huge

o fontSize: A point size that is used directly when creating the font. If the value is set to 0, then the font

automatically resizes to fit the targetRect.

o fontfile: The filename for a non-system font to use

o hAlign: The left/center/right alignment of the text on a line

o vAlign: The top/center/bottom alignment of the text perpendicular to the line

o rotation: The 0/90/180/270 degree rotation of the text

o color: The #[aa]rrggbb hex value of the text

3. Image

• filename: The filename of an image

• targetRect: The rectangle in which the image is displayed. The image will be automatically resized to fit into the

target area.

• sourceRect: The source rectangle to clip from a source image

• compositionMode: Enter either source or source_over. The latter alpha blends with underlying objects. The

former replaces the underlying values completely.

4. QR Codes

Note: QR (quick response) codes appear as squares of black dots on a white background. They are used to encode

URLs, email addresses, etc, and they can be scanned using readily available software for smart phones. Although the

codes usually appear as black on white, you can, in theory, use any two contrasting colors.

• targetRect: The rectangle in which the QR code is displayed

o Regardless of the aspect ratio of this rectangle, the QR code itself will always be squared with the

background color that fills the gaps.

57

• QrCode (simple form): Contains the string to encode into the QR code.

• QrCode (complex form): Contains an array of parameters for the QR code. The parameters can be any of the

following:

o color: The foreground color in the QR code (the default is black)

o backgroundColor: The background color in the QR code (the default is white)

o rotation: 0/90/180/270 degree rotation of the code. The code will scan regardless of rotation.

o qrText: Contains the text to encode into the QR code.

Example: This code contains most of the roCanvasWidget features outlined above:

rect=CreateObject("roRectangle", 0, 0, 1920, 1080)

cw=CreateObject("roCanvasWidget", rect)

aa=CreateObject("roAssociativeArray")

aa["text"] = "Primal Scream"

aa["targetRect"] = { x: 280, y: 180, w: 500, h: 30 }

aa["textAttrs"] = { Color:"#AAAAAA", font:"Medium", HAlign:"Left", VAlign:"Top"}

aa1=CreateObject("roAssociativeArray")

aa1["text"] = "Movin' on up, followed by something else, followed by something else,

followed by something else, followed by something else"

aa1["targetRect"] = { x: 282, y: 215, w: 80, h: 500 }

aa1["textAttrs"] = { Color:"#ffffff", font:"Large", fontfile:"usb1:/GiddyupStd.otf",

HAlign:"Left", VAlign:"Top", rotation:"90"}

array=CreateObject("roArray", 10, false)

58

array.Push({ color: "5c5d5f" })

array.Push({ filename: "transparent-balls.png" })

array.Push(aa)

aa2=CreateObject("roAssociativeArray")

aa2["filename"] = "transparent-balls.png"

aa2["CompositionMode"] = "source_over"

aa2["targetRect"] = { x: 400, y: 200, w: 200, h: 200 }

aa3=CreateObject("roAssociativeArray")

aa3["QrCode"] = "www.brightsign.biz"

aa3["targetRect"] = { x: 100, y: 100, w: 400, h: 400 }

aa4=CreateObject("roAssociativeArray")

aa4["QrCode"] = { qrText:"www.brightsign.biz", rotation:"90" }

aa4["targetRect"] = { x: 1200, y: 100, w: 400, h: 600 }

aa5=CreateObject("roAssociativeArray")

aa5["QrCode"] = { color:"#964969", backgroundColor:"#FFFF77",

qrText:"www.brightsign.biz", rotation:"180" }

aa5["targetRect"] = { x: 100, y: 600, w: 400, h: 400 }

cw.Show()

cw.EnableAutoRedraw(0)

cw.SetLayer(array, 0)

cw.SetLayer(aa1, 1)

cw.SetLayer(aa1, 2)

59

cw.SetLayer(aa3, 3)

cw.SetLayer(aa4, 4)

cw.SetLayer(aa5, 5)

cw.EnableAutoRedraw(1)

cw.ClearLayer(0)

60

roClockWidget
This object places a clock on the screen. It has no extra interface, only construction arguments.

Interfaces: ifTextWidget, ifWidget

Object creation: The roClockWidget object is created with several parameters.

CreateObject("roClockWidget", rect As roRectangle, res As roResourceManager, display_type

As Integer)

• rect: The rectangle in which the clock is displayed. The widget picks a font based on the size of the rectangle.
• res: A resources.txt file that allows localization via the roResourceManager object (see below for further details).
• display_type: Use 0 for date only, and 1 for clock only. To show both on the screen, you need to create two

widgets.

Example:

rect=CreateObject("roRectangle", 0, 0, 300, 60)

res=CreateObject("roResourceManager", "resources.txt")

c=CreateObject("roClockWidget", rect, res, 1)

c.Show()

The resource manager is passed into the widget, which uses the following resources within "resources.txt" to display the
time and date correctly. Here are the "eng" entries:
[CLOCK_DATE_FORMAT]

eng "%A, %B %e, %Y"

[CLOCK_TIME_FORMAT]

eng "%l:%M"

61

[CLOCK_TIME_AM]

eng "AM"

[CLOCK_TIME_PM]

eng "PM"

[CLOCK_DATE_SHORT_MONTH]

eng "Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec"

[CLOCK_DATE_LONG_MONTH]

eng

"January|February|March|April|May|June|July|August|September|October|November|December"

[CLOCK_DATE_SHORT_DAY]

eng "Sun|Mon|Tue|Wed|Thu|Fri|Sat"

[CLOCK_DATE_LONG_DAY]

eng "Sunday|Monday|Tuesday|Wednesday|Thursday|Friday|Saturday"

The following are the control characters for the date/time format strings:

// Date format

//

// %a Abbreviated weekday name

// %A Long weekday name

// %b Abbreviated month name

// %B Full month name

// %d Day of the month as decimal 01 to 31

// %e Like %d, the day of the month as a decimal number, but without leading zero

// %m Month name as a decimal 01 to 12

// %n Like %m, the month as a decimal number, but without leading zero

// %y Two digit year

62

// %Y Four digit year

// Time format

//

// %H The hour using 24-hour clock (00 to 23)

// %I The hour using 12-hour clock (01 to 12)

// %k The hour using 24-hour clock (0 to 23); single digits are preceded by a blank.

// %l The hour using 12-hour clock (1 to 12); single digits are preceded by a blank.

// %M Minutes (00 to 59)

// %S Seconds (00 to 59)

The ifWidget interface provides the following:
• SetForegroundColor(color As Integer) As Boolean: Sets the foreground color in ARGB format.
• SetBackgroundColor(color As Integer) As Boolean: Sets the background color in ARGB format.
• SetFont(font_filename As String) As Boolean: Sets the font_filename using a TrueType font (for

example, SD:/Ariel.ttf).
• SetBackgroundBitmap(background_bitmap_filename As String, stretch As Boolean) As

Boolean: Sets the background bitmap. If stretch is True, then the image is stretched to the size of the window.
• SetSafeTextRegion(region As roRectangle) As Boolean: Specifies the rectangle within the widget

where the text can be drawn safely.
• Show() As Boolean: Displays the widget. After creation, the widget is hidden until Show() is called.
• Hide() As Boolean: Hides the widget.
• GetFailureReason() As String: Yields additional useful information if a function return indicates an error.
• SetRectangle(r As roRectangle) As Boolean: Changes the size and positioning of the widget rectangle

using the passed roRectangle object.

63

roHtmlWidget
This object embeds the WebKit HTML renderer. You can use multiple instances of roHtmlWidget at the same time.

Object creation: Like other widgets, an roHtmlWidget is created with an roRectangle, which specifies the size and
positioning of the widget on the screen.

CreateObject("roHtmlWidget", rect As roRectangle)

Interfaces: ifHtmlWidget, ifMessagePort, ifUserData

The ifHtmlWidget interface provides the following:

• GetFailureReason() As String: : Gives more information when a member function returns False.
• Hide() As Boolean: Hides the widget.
• Show() As Boolean: Shows the widget.
• SetRectangle(r As roRectangle) As Boolean: Changes the size and positioning of the widget rectangle

using the passed roRectangle object.
• SetURL(URL As String) As Boolean: Displays content from the specified URL.
Note:
When using SetUrl to retrieve content from local storage, you do not need to specify the full file path:
SetUrl("file:/example.html"). If the content is located somewhere other than the current storage device, you
can specify it within the string itself. For example, you can use the following syntax to retrieve content from a storage
device inserted into the USB port when the current device is an SD card:
SetUrl("file:///USB1:/example.html").
• MapFilesFromAssetPool(asset_pool As roAssetPool, asset_collection As

roAssetCollection, pool_prefix As String, uri_prefix As String) As Boolean: Sets the
mapping between the URL space and the pool files.

64

• SetZoomLevel(scale_factor as Float): Adjusts the scale factor for the displayed page (the default equals
1.0).

• EnableSecurity(a As Boolean) As Boolean: Enables security checks by the Webkit. Setting this method
to False disables security checks.

• EnableMouseEvents() As Boolean: Enables response to button presses if True. Setting this method to False
(the default) disables this feature.

• SetPortrait(portrait_mode As Boolean) As Boolean: Sets the screen orientation to portrait if True. If
this method is False (the default), the screen is oriented as a landscape.

• SetAlpha(alpha As Integer) As Boolean: Sets the overall alpha level for the widget (the default equals
255).

• EnableScrollbars(scrollbars As Boolean) As Boolean: Enables automatic scrollbars for content that
does not fit into the viewport if True. Setting this method to False (the default) disables this feature.

• AddFont(filename As String) As Boolean: Makes a font available for text rendering. The AddFont()
method can be used to supply additional or custom typefaces for the WebKit renderer. These should be supplied in
the form of TTF files, and the filename should be passed as the argument to AddFont().

• SetHWZDefault(default As String): Sets the default HWZ mode for HTML video. Normally, HWZ must be
enabled in each <video> tag, but passing "on" to this string enables HWZ for all <video> elements.

• SetUserStylesheet(URI As String) As Boolean: Applies the specified user stylesheet to the page(s)
loaded in the widget. The parameter can be a URI specifying any file: resource in the storage. The stylesheet
can also be specified as inline data in the following form: "data:text/css;charset=utf-8;base64,<base64 encoded
data>". This method will fail if you specify the inline data in any other order or if you use any data format other than
base64.

• SetAppCacheDir(file_path As String) As Boolean: Sets the directory to use for storing the application
cache (which services <html manifest="example.appcache"> tags). The file path is passed to the method
as a string (e.g. "SD:/appcache").

• SetAppCacheSize(maximum As Integer) As Boolean: Sets the maximum size (in bytes) for the
application cache. Changing the storage size of the application cache will clear the cache and rebuild the cache

65

storage. Depending on database-specific attributes, you will only be able to set the size in units that are equal to
the page size of the database, which is established at creation. These storage units will occur only in the following
increments: 512, 1024, 2048, 4096, 8192, 16384, 32768.

• FlushCachedResources() As Boolean: Discards any resources that WebKit has cached in memory.
• SetLocalStorageDir(file_path As String): Specifies the directory that should be used for local storage

applications such as the JavaScript storage class (e.g. "SD:/localdb")
• SetLocalStorageQuota(maximum As Integer): Sets the total size (in bytes) allotted to all local storage

applications. The default total size is 5MB.
• SetWebDatabaseDir(file_path As String): Specifies the directory that should be used for web database

applications (e.g. "SD:/webdb"). This method must be called before using web database applications such as Web
SQL or IndexedDB.

• SetWebDatabaseQuota(maximum As Integer): Sets the total size (in bytes) allotted to all web database
applications. The default total size is 5MB.

• EnableJavaScript(enable As Boolean) As Boolean

• AllowJavaScriptURLs(url_collection As roAssociativeArray): Allows the specified JavaScript
BrightScript classes to be used by the specified URLs (all BrightScript classes in JavaScript are disabled by
default). This method accepts an associative array that maps JavaScript BrightScript classes to the URL(s) that are
allowed to use them.

o An all key indicates that all classes are authorized for the associated URL(s).
o An asterisk "*" value indicates that all URLs are authorized for the associated BrightScript class.
o A "local" value indicates that all local pages are authorized for the associated BrightScript class.

Example: The following will enable all BrightScript classes for all URLs.

html.AllowJavaScriptUrls({ all: "*" })

Example: The following will enable all BrightScript classes for local pages and the BrightSign homepage.

html.AllowJavaScriptUrls({ all: "local", "http://www.brightsign.biz" })

66

• PostJSMessage(data As roAssociativeArray) As Boolean: Posts a collection of key:value pairs to the
BSMessagePort JavaScript class (see the JavaScript Objects for BrightScript tech note for more details). This
method does not support passing nested associative arrays.

• StartInspectorServer(port As Integer) As Boolean: Enables the JavaScript console, which allows
you to debug JavaScript applications while a webpage is running. To access the console, navigate to the player IP
address at the specified port number. See this page for documentation relating to the JavaScript console.

• SetUserAgent(user_agent As String) As Boolean: Changes the default user-agent string reported by
WebKit.
Example: The following is a default user-agent string sent by an XD1230.

BrightSign/4.7.85.2-8-g1a6e6f6-td-debug (XD1230) Mozilla/5.0 (compatible; Linux

mips) AppleWebKit/537.4 (KHTML, like Gecko)

Chromium/18.0.1025.168 Chrome/18.0.1025.168 Safari/537.4

The ifMessagePort interface provides the following:

• SetPort (a As Object)

The ifUserData interface provides the following:

• SetUserData(user_data As Object): Sets the user data that will be returned when events are raised.
• GetUserData() As Object: Returns the user data that has previously been set via SetUserData(). It will

return Invalid if no data has been set.

An roMessagePort can be attached to an roHtmlWidget. It will then receive roHtmlWidgetEvent objects when something
happens to the parent widget. An roAssociativeArray functions as the payload of the roHtmlWidgetEvent, and the payload
can be retrieved using the GetData() method. Within the associative array, the reason key identifies the cause of the
event. The reason key can return the following values:

• load-started: The WebKit has started loading a page.

http://trac.webkit.org/wiki/WebInspector�

67

• load-finished: The WebKit has completed loading a page.
• load-error: The WebKit has failed to load a page. The uri key identifies the failing resource, and the message

key provides some explanatory text.

Filename Mapping
HTML content that has been deployed via BrightAuthor will typically reside in the pool and have encrypted SHA1-based
filenames. A mapping mechanism is required to allow any relative URIs contained in the HTML content to continue
working and to locate the appropriate resources in their respective pool locations.

An roHtmlWidget.MapFilesFromAssetPool() method can be used to bind part of the resource URI space onto
pool locations, as long as it is used with the following: an roAssetPool object containing some assets, an
roAssetCollection object identifying them, and two semi-arbitrary strings (URI_PREFIX and POOL_PREFIX).

Any URI in the form "file:/[URI_PREFIX][RESOURCE_ID]" will be rewritten into the form "[POOL_PREFIX]
[RESOURCE_ID]". It will then be located in the pool as if that name had been passed to the
roAssetPoolFiles.GetPoolFilePath() method. This binding occurs for every instance of roHtmlWidget, so different
mappings can be used for different bundles of content.

68

roImageBuffer
This object allows you to access decoded image-file data.

Object Creation: An roImageBuffer object is instantiated with an roImagePlayer object and a string specifying the file path
of an image file.

CreateObject(“roImageBuffer”, image_player As Object, file_path As String)

Example:

imgPlayer = CreateObject("roImagePlayer")

imgBuffer = CreateObject("roImageBuffer", imgPlayer, "SD:/content/image.png")

Interfaces: ifImageBufferControl

The ifImageBufferControl interface provides the following:

• DisplayBuffer(x As Integer, y As Integer) As Boolean: Displays the image on screen. The x and y
integers specify the coordinates of the top-left corner of the image.

69

roImagePlayer
This object displays static bitmap images on the video display. The simplest way to use roImagePlayer is to make calls to
DisplayFile() with the filename as a String. Alternatively, you can use PreloadFile() in conjunction with
DisplayPreload() to have more control. For more pleasing aesthetics when generating an image player, use
the roImageWidget object.

Object Creation: The image player is displayed by first creating roRectangle and roImagePlayer instances, then calling
SetRectangle() using the roRectangle instance as the argument.

rectangle = CreateObject("roRectangle", 0, 0, 1024, 768)

i = CreateObject("roImagePlayer")

i.SetRectangle(rectangle)

Interfaces: ifImageControl

The ifImageControl interface provides the following:

• DisplayFile(image_filename As String) As Boolean: Displays the image with the specified filename.
The image_filename string must point to a .png, .jpeg, or 8-bit, 24-bit, or 32-bit .bmp file. Note that .jpeg image
files with CMYK color profiles are not supported.

• DisplayFile(parameters As roAssociativeArray) As Boolean: Displays an image using an
associative array of display parameters:

o Filename

o Mode: See the entry for SetDefaultMode() below for more details.
o Transition: See the entry for SetDefaultTransition() below for more details.

70

• PreloadFile(image_filename As String) As Boolean: Loads the specified image file into an offscreen
memory buffer.

• PreloadFile(parameters As roAssociativeArray) As Boolean: Loads an image file into an offscreen
memrory buffer. Image display properties are determined by an associative array of parameters:

o Filename

o Mode: See the entry for SetDefaultMode() below for more details.
o Transition: See the entry for SetDefaultTransition() below for more details.

• DisplayPreload() As Boolean: Uses the on-screen memory buffer to display the image stored in the
offscreen memory buffer using PreloadFile(). There are only two memory buffers: one is displayed on screen;
and the other is used for preloading images. PreloadFile() can be called multiple times before
DisplayPreload() is called, and will keep loading into the same off-screen buffer. The DisplayFile()
method calls PreloadFile() followed immediately by DisplayPreload(), so any previously preloaded image
will be lost. If no image is preloaded, DisplayPreload() will have no effect.

• StopDisplay() As Boolean: Removes an image from the display.
• DisplayFileEx(filename As String, mode As Integer, x As Integer, y As Integer) As

Boolean

• PreloadFileEx(filename As String, mode As Integer, x As Integer, y As Integer) As
Boolean

• SetDefaultMode(mode As Integer) As Boolean: Sets the default image display mode for
DisplayFile() and PreloadFile(). If SetDefaultMode() is not called, then the default mode is set to 0
(equivalent to the image being centered without scaling). The supported display mode are listed below:

o 0 - Center image: No scaling takes place. Cropping only occurs if the image is bigger than the screen.
o 1 - Scale to fit: The image is scaled so that it is fully viewable, with its aspect ratio maintained.
o 2 - Scale to fill and crop: The image is scaled so that it completely fills the screen, with its aspect ratio

maintained.
o 3 - Scale to fill: The image is stretched so that it fills the screen and the whole image is viewable. This

means that the aspect ratio will not be maintained if it is different to that of the current screen resolution.

71

• SetDefaultTransition(transition As Integer) As Boolean: Sets the transition to be used when the
next image is displayed. The following are available transitions:

o 0: No transition: immediate blit

o 1-4: Wipes from top, bottom, left, or right.

o 5-8: Explodes from centre, top left, top right, bottom left, or bottom right.

o 10-11: Uses vertical or horizontal venetian-blind effect.

o 12-13: Combs vertical or horizontal.

o 14: Fades out to background color, then back in.

o 15: Fades between current image and new image.

o 16-19: Slides from top, bottom, left or right.

o 20-23: Slides entire screen from top, bottom, left, or right.

o 24-25: Scales old image in, then the new one out again (this works as a pseudo rotation around a vertical or

horizontal axis).

o 26-29: Expands a new image onto the screen from right, left, bottom, or top.

• SetRectangle(r As roRectangle) As Boolean: Changes the size and positioning of the image rectangle

using the passed roRectangle object.
• SetTransform(transform As String) As Boolean: Applies one of eight transforms to the image. Calls to

this method only take effect when the next file is displayed. Note that the image rectangle itself does not change to
accommodate the new height and width ratio of a transformed image. This method can be called separately on
multiple roImagePlayer or roImageWidget instances.

o identity: No transformation (default behavior)
o rot90: 90 degree clockwise rotation
o rot180: 180 degree rotation
o rot270: 270 degree clockwise rotation
o mirror: Horizontal mirror transformation

72

o mirror_rot90: Mirrored 90 degree clockwise rotation
o mirror_rot180: Mirrored 180 degree clockwise rotation
o mirror_rot270: Mirrored 270 degree clockwise rotation

• OverlayImage(a As String, b As Integer, c As Integer) As Boolean

• GetRectangle() As roRectangle: Returns an roRectangle object that has the same location and dimensions
as the roRectangle object used to define the image window.

• CreateTestHole(hole As roRectangle) As Boolean: Creates a hole in the image with the location and
dimensions specified in the passed roRectangle instance. Any video windows located directly beneath the image
will show through. This method will disrupt image playback and should be used for test purposes only.

• SetTransitionDuration(duration As Integer) As Boolean: Sets the amount of time it takes (in
milliseconds) for a specified transition effect to take place. The default transition duration is 1000 milliseconds.

• DisplayBuffer(a As Object, b As Integer, c As Integer) As Boolean

• Hide() As Boolean: Hides the image currently being displayed by the roImagePlayer widget.
• Show() As Boolean: Shows the image currently being displayed by the roImagePlayer widget.

X, Y: x and y indicate which position of the image to center as near as possible, or both x and y can be set to -1, which
uses the center of the image as the point to position nearest to the center.

To display images in a zone, SetRectangle() must be called, and EnableZoneSupport() must be included in a
script to use the zones functionality.

Here are some example shell commands you can use to test the different display modes:

Roku> image filename.bmp 0

Roku> image filename.bmp 1

Roku> image filename.bmp 2

Roku> image filename.bmp 3

73

Roku> image filename.bmp 0 0 0

Roku> image filename.bmp 2 0 0

The following example script uses preloaded images to improve the UI speed when the user hits a key on the keyboard.
As soon as a key is struck, the display switches to the new image, which has already been preloaded. The only possible
delay occurs if the key is hit while the image is preloading. In this case, the image will display as soon as it is loaded.

i = CreateObject("roImagePlayer")

p = CreateObject("roMessagePort")

k = CreateObject("roKeyboard")

k.SetPort(p)

i.PreloadFile("one.bmp")

loop:

i.DisplayPreload

i.PreloadFile("two.bmp")

Wait(0,p)

i.DisplayPreload

i.PreloadFile("one.bmp")

Wait(0,p)

goto loop

74

roImageWidget
This object can be used in place of roImagePlayer in cases where the image is displayed within a rectangle. Using a
roImageWidget can result in more pleasing aesthetics for image player creation. Beyond this, roImageWidget behaves
identically to roImagePlayer.

Object Creation: The image widget area is generated using an roRectangle object.

rectangle = CreateObject("roRectangle", 0, 0, 1024, 768)

i = CreateObject("roImageWidget", rectangle)

Interfaces: ifImageControl

See roImagePlayer for a description of ifImageControl and its attendant methods.

This object includes overloaded PreloadFile() and DisplayFile() methods. These methods receive
an roAssociativeArray object that stores various options to be passed. They must be used when displaying images across
multiple screens in an array, or displaying a portion of an image—though they can also be used in place of the original
method calls.

Example: This code uses PreloadFile() method for a multiscreen display:

i=CreateObject("roImageWidget")

a=CreateObject("roAssociativeArray")

a["Filename"] = "test.jpg"

a["Mode"] = 1

a["Transition"] = 14

75

a["MultiscreenWidth"] = 3

a["MultiscreenHeight"] = 2

a["MultiscreenX"] = 0

a["MultiscreenY"] = 0

i.PreloadFile(a)

i.DisplayPreload

The filename, mode, and transition values are the same as those documented in the roImagePlayer.ifImageControl
section, but the multiscreen parameters are unique. The MultiscreenWidth and MultiscreenHeight parameters specify the
width and height of the multi-screen matrix. For example, 3x2 would be three screens wide and two screens high. The
MultiscreenX and MultiscreenY specify the position of the current screen within that matrix.

In the above case, on average only 1/6 of the image is drawn on each screen, though the image mode still applies so that,
depending on the shape of the image, it may have black bars on the side screens. It is relatively simple, therefore, for an
image widget to display part of an image based on its position in the multiscreen array. The following are default values
for the parameters:
Mode = 0

Transition = 0

MultiscreenWidth = 1

MultiscreenHeight = 1

MultiscreenX = 0

MultiscreenY = 0

Example: This code uses DisplayFile for displaying a portion of an image:

i=CreateObject("roImageWidget")

a=CreateObject("roAssociativeArray")

76

a["Filename"] = "test.JPG"

a["Mode"] = 0

a["SourceX"] = 600

a["SourceY"] = 600

a["SourceWidth"] = 400

a["SourceHeight"] = 400

i.DisplayFile(a)

This displays just a portion of the image test JPG starting at coordinates SourceX, SourceY, and SourceWidth by
SourceHeight in size. The viewmode is still honored as if it were displaying the whole file.

77

roRectangle
This object is created with several parameters:

CreateObject("roRectangle", x As Integer, y As Integer, width As Integer, height As

Integer)

Interfaces: ifRectangle

The interface ifRectangle provides the following:
• SetX(x As Integer) As Void

• SetY(y As Integer) As Void

• SetWidth(width As Integer) As Void

• SetHeight(height As Integer) As Void

• GetX() As Integer

• GetY() As Integer

• GetWidth() As Integer

• GetHeight() As Integer

SetRectangle calls honor the view mode/aspect ratio conversion mode set up by the user. If the user has set the video
player for letterboxing, it will occur if the video does not fit exactly into the new rectangle.

78

roShoutcastStream
This object allows playback of shoutcast streams.

Object Creation: The roShoutcastStream object is created with a URL object, a maximum buffer size (in seconds), and an
initial buffering duration (in seconds).

CreateObject("roShoutcastStream", url_transfer As Object, buffer_size As Integer,

buffer_duration As Integer)

Interfaces: ifShoutcastStream, ifSetMessagePort, ifSourceIdentity

The ifShoutcastStream interface provides the following:

• GetUrl() As String

• GetBufferedDuration() As Integer

• GetTimeSinceLastData() As Integer

• GetCurrentMetadata() As String

• Rebuffer() As Boolean

• AsyncSaveBuffer(a As String) As Boolean

• RestartBufferRecord() As Boolean

The ifSetMessagePort interface provides the following:

• SetPort(a As Object)

The ifSourceIdentity interface provides the following:
• GetSourceIdentity() As Integer

• SetSourceIdentity(a As Integer)

79

roShoutcastStreamEvent

Interfaces: ifInt, ifSourceIdentity

The ifInt interface provides the following:

• GetInt() As Integer

• SetInt(a As Integer)

The ifSourceIdentity interface provides the following:
• GetSourceIdentity() As Integer

• SetSourceIdentity(a As Integer)

80

roTextField
A text field represents an area of the screen that can contain arbitrary text. This feature is intended for presenting
diagnostic and usage information rather than for generating a user interface.

The object is created with several parameters:

CreateObject("roTextField", xpos As Integer, ypos As Integer, width_in_chars As Integer,

height_in_chars As Integer, metadata As Object)

• xpos: The horizontal coordinate for the top left of the text field.
• ypos: The vertical coordinate for the top left of the text field. The top of the screen is equivalent to zero.
• width_in_chars: The width of the text field in character cells.
• height_in_chars: The height of the text field in character cells.
• metadata: An optional roAssociativeArray containing extra parameters for the text field. You can pass zero if you

do not require this.

Note: In TV modes a border around the screen may not be displayed due to overscanning. You may want to use the
roVideoMode object functions GetSafeX and GetSafeY to ensure that the coordinates you use will be visible.

The metadata object supports the following extra parameters:

• "CharWidth": The width of each character cell in pixels.
• "CharHeight": The height of each character cell in pixels.
• "BackgroundColor": The background color of the text field as an integer specifying eight bits (for each) for red,

green and blue in the form &Hrrggbb.
• "TextColor": The color of the text as an integer specifying eight bits (for each) for red, green and blue in the form

&Hrrggbb.

81

• "Size"= An alternative to "CharWidth" and "CharHeight" for specifying either normal size text (0) or double-sized
text (1).

Interfaces: ifTextField, ifStreamSend

The ifTextField interface provides the following:

• Cls() As Void: Clears the text field.
• GetWidth() As Integer: Returns the width of the text field
• GetHeight() As Integer: Returns the height of the text field.
• SetCursorPos(x As Integer, y As Integer) As Void: Moves the cursor to the specified position.

Subsequent output will appear at this position.
• GetValue() As Integer: Returns the value of the character currently under the cursor.

The ifStreamSend interface provides the following:
• SendByte(byte As Integer) As Void: Writes the character indicated by the specified number at the current

cursor position within the text field. It then advances the cursor.
• SendLine(string As String) As Void: Writes the characters specified at the current cursor position

followed by the end-of-line sequence.
• SendBlock(string As Dynamic) As Void: Writes the characters specified at the current cursor position and

advances the cursor to one position beyond the last character. This method can support either a string or
an roByteArray. If the block is a string, any null bytes will terminate the block.

• SetSendEol(string As String) As Void: Sets the sequence sent at the end of a SendLine request. You
should leave this at the default value of "chr(13)" for normal use.

Note: The ifStreamSend interface is also described in the section documenting the various file objects. The interface is
described again here in a manner more specific to the roTextField object.

82

As with any object that implements the ifStreamSend interface, a text field can be written to using the PRINT
#textfield syntax. See the example below for more details.

It is also possible to write to a text field using the syntax PRINT #textfield, @pos, where pos is the character
position in the textfield. For example, if your textfield object has 8 columns and 3 rows, writing to position 17 writes to row
3, column 2 (positions 0-7 are in row 1; positions 8-15 are in row 2; and positions 16-23 are in the last row).

When output reaches the bottom of the text field, it will automatically scroll.

Example:

meta = CreateObject("roAssociativeArray")

meta.AddReplace("CharWidth", 20)

meta.AddReplace("CharHeight", 32)

meta.AddReplace("BackgroundColor", &H101010) ' Dark grey

meta.AddReplace("TextColor", &Hffff00) ' Yellow

vm = CreateObject("roVideoMode")

tf = CreateObject("roTextField", vm.GetSafeX(), vm.GetSafeY(), 20, 20, meta)

print #tf, "Hello World"

tf.SetCursorPos(4, 10)

print #tf, "World Hello"

83

roTextWidget
This object is used to display text on the screen.

Object Creation: This object is created with several parameters.

CreateObject("roTextWidget", r As roRectangle, line_count As Integer, text_mode As

Integer, pause_time As Integer)

• r : An roRectangle instance that contains the text
• line_count: The number of lines of text to show within the rectangle
• text_mode: The animation characteristics of the text:

o 0: An animated view similar to teletype
o 1: Static text
o 2: Simple text with no queue of strings
o 3: Smooth right-to-left scrolling ticker

• pause_time: The length of time each string is displayed before displaying the next string. This does not apply to
text mode 2 or 3 because the strings on screen are updated immediately.

CreateObject("roTextWidget", r As roRectangle, line_count As Integer, text_mode As

Integer, array As roAssociativeArray)

• r : An roRectangle that contains the text
• line_count: The number of lines of text to show within the rectangle
• text_mode: The animation characteristics of the text:

o 0: An animated view similar to teletype
o 1: Static text
o 2: Simple text with no queue of strings
o 3: Smooth right-to-left scrolling ticker (strings are separated by a diamond)

84

• array: An associative array that can include the following values:
o "LineCount": The number of lines of text to show within the rectangle.
o "TextMode": The animation characteristics of the text:

• 0: An animated view similar to teletype
• 1: Static text
• 2: Simple text with no queue of strings
• 3: Smooth right-to-left scrolling ticker (strings are separated by a diamond)

o "PauseTime": The length of time each string is displayed before displaying the next string. This does not
apply to text mode 2 or 3 because the strings on screen are updated immediately.

o "Rotation": The rotation of the text within the widget:
• 0: 0 degrees
• 1: 90 degrees. This value can also be represented in degrees (90) or radians (.5Π).
• 2: 180 degrees. This value can also be represented in degrees (180) or radians (Π).
• 3: 270 degrees. This value can also be represented in degrees (270) or radians (1.5Π).

o "Alignment": The alignment of the text:
• 0: Left
• 1: Center
• 2: Right

Interfaces: ifTextWidget, ifWidget

The ifTextWidget interface provides the following:

• PushString(str As String) As Boolean: Adds the string to the list of strings to display in modes 0 and 1.
Strings are displayed in order, and when the end is reached, the object loops, returning to the beginning of the list.
In mode 2, the string is displayed immediately.

85

• PopStrings(number_of_string_to_pop As Integer) As Boolean: Pops strings off the front of the list
(using "last in, first out" ordering) in modes 0 and 1. This occurs the next time the widget wraps so that strings can
be added to and removed from the widget seamlessly. In mode 2, the string is cleared from the widget immediately.

• GetStringCount() As Integer: Returns the number of strings that will exist once any pending pops have
taken place.

• Clear() As Boolean: Clears the list of strings, leaving the widget blank and able to accept more PushString
calls.

• SetStringSource(file_path As String) As Boolean: Displays the text file at the specified path as a
single, continuous string. This method is only applicable to text mode 3 (scrolling ticker). When the end of the file is
reached, the text widget loops to the beginning, using a diamond symbol as the separator.

• SetAnimationSpeed(speed As Integer) As Boolean: Sets the speed at which animated text displays.
This method is applicable to text modes 0 and 3 only:

o Mode 0: The default speed value is 10000. Setting an integer above this value decreases the speed of the
teletype-style ticker: For example, specifying a value of 20000 will decrease the default speed at which text
displays by half, while a value of 5000 will double the default speed.

o Mode 3: The default speed value is 10000. Because the speed of a scrolling ticker is measured in pixels per
second (PPS), the speed must be a multiple of the current framerate, or else it will be rounded down to the
nearest multiple (for example, a framerate of 60p will honor PPS values of 60, 120, 180, etc.). The software
determines the speed of the scrolling ticker by performing the following calculation on the passed speed
parameter:
PPS = (speed * 60) / 10000

• SetMultiscreen(offset As Integer, size As Integer, ip_address As String, port As

Integer) As Boolean: Allows for a smooth-scrolling ticker to be displayed across multiple screens. The master
screen is designated as the instance with the rightmost offset of all the players in the multiscreen array; all
PushString() and Show() calls (as well as any other changes) must be made on the master instance. Slave
instances of the text widget will remain blank until the master starts. This method requires the following parameters:

86

o offset: The offset (in pixels) of the display in the multiscreen array. For example, using an offset of
1920 in a two-screen array of 1920x1080 screens would specify this player as the right-hand (master)
display.

o size: The total width (in pixels) of the multiscreen array. For example, defining a size of 3840 would
specify a two-screen array of 1920x1080 screens.

o ip_address: A string specifying the multicast IP address for the PTP synchronization process (e.g.
"239.192.0.0")

o port: A string specifying the multicast port for the PTP synchronization process (e.g. "1234").
Note: Players can support more than one multiscreen ticker at a time.

This ifWidget interface provides the following:
• SetForegroundColor(color As Integer) As Boolean: Sets the foreground color in ARGB format.
• SetBackgroundColor(color As Integer) As Boolean: Sets the background color in ARGB format.
• SetFont(font_filename As String) As Boolean: Sets the font_filename using a TrueType font (for

example, SD:/ComicSans.ttf).
• SetBackgroundBitmap(background_bitmap_filename As String, stretch As Boolean) As

Boolean: Sets the background bitmap. If stretch is True, then the image is stretched to the size of the window.
• SetSafeTextRegion(region As roRectangle) As Boolean: Specifies the rectangle within the widget

where the text can be drawn safely.
• SetRectangle(r As roRectangle) As Boolean: Changes the size and positioning of the widget rectangle

using the passed roRectangle object.
• Show() As Boolean: Displays the widget. After creation, the widget is hidden until Show() is called.
• Hide() As Boolean: Hides the widget.
• GetFailureReason() As String: Yields additional useful information if a function return indicates an error.

87

The top 8 bits of the color value are "alpha," affecting both the foreground text color and the widget background color.
Zero is equivalent to fully transparent and 255 to fully non-transparent. This feature allows effects similar to subtitles. For
example, you can create a semi-transparent black box containing text over video.

Modes 0 and 1 are useful for displaying RSS feeds and ticker-type text. However, for dynamic data where immediate
screen updates are required, mode 2 is more appropriate. Mode 2 allows text to be drawn immediately to the screen.

88

roVideoEvent, roAudioEvent
Video and audio events can have one of these integer values. They are declared as separate classes as they are likely to
diverge in the future:
1 Undefined: Player is in an undefined state.
2 Stopped: Playback of the current media item is stopped.
3 Playing: The current media item is playing.
4 ScanForward: The current media item is fast forwarding.
5 ScanReverse: The current media item is rewinding.
6 Buffering: The current media item is getting additional data from the server.
7 Waiting: Connection is established, but the server is not sending data. Waiting for session to begin.
8 MediaEnded: The media item has completed playback.
9 Transitioning: Player is preparing new media item.
10 Ready: Player is ready to begin playing.
11 Reconnecting: Player is reconnecting to the stream.
12 TimeHit: A particular timecode is hit. See roVideoPlayer.

Interfaces: ifInt, ifData

The ifInt interface contains the event ID enumerated above and provides the following:

• GetInt As Integer()
• SetInt(a As Integer)

• GetSourceIdentity() As Integer

• SetSourceIdentity() As Integer

The ifData interface contains userdata and provides the following:
• GetData() As Integer

89

• SetData(a As Integer)

Example:

vp_msg_loop:

 msg=Wait(tiut, p)

 if type(msg)="roVideoEvent" then

 if debug then print "Video Event";msg.GetInt()

 if msg.GetInt() = 8 then

 if debug then print "VideoFinished"

 retcode=5

 return

 endif

 else if type(msg)="roGpioButton" then

 if debug then print "Button Press";msg

 if escm and msg=BM then retcode=1:return

 if esc1 and msg=B1 then retcode=2:return

 if esc2 and msg=B2 then retcode=3:return

 if esc3 and msg=B3 then retcode=4:return

 else if type(msg)="rotINT32" then

 if debug then print "TimeOut"

 retcode=6

 return

 endif

 goto vp_msg_loop

90

roVideoInput
This object allows playback of HDMI input or video provided by a video capture dongle. Note that the ifVideoInput
methods do not apply to HDMI input, which can be achieved by passing an unmodified roVideoInput instance to the
roVideoPlayer.PlayFile() method (see below for examples).

roVideoInput is created with no parameters:

CreateObject("roVideoInput")

Interfaces: ifVideoInput

The ifVideoInput interface provides the following:

• GetStandards() As roArray

• GetInputs() As roArray: These return an array of strings describing the various inputs and video standards
that the video capture device supports. The following are the possible standards that can be returned: PAL-D/K,
PAL-G, PAL-H, PAL-I, PAL-D, PAL-D1, PAL-K, PAL-M, PAL-N, PAL-Nc, PAL-60, SECAM-B/G, ECAM-B, SECAM-
D, SECAM-G, SECAM-H, SECAM-K, SECAM-K1, SECAM-L, SECAM-LC, SECAM-D/K, NTSC-M, NTSC-Mj,
NTSC-443, NTSC-Mk, PAL-B and PAL-B1. Inputs returned are s-video and composite.

• SetStandard(standard As String) As Boolean

• GetCurrentStandard() As String

• SetInput(input As String) As Boolean

• GetCurrentInput() As String: Use the above to get and set the input and video standard.
• GetControls() As roArray: Returns the possible controls on the input. These include "Brightness,"

"Contrast," "Saturation," "Hue," and others.
• SetControlValue(control_name As String, value As Integer) As Boolean: Sets the value of the

specified control.

91

• GetCurrentControlValue(control_name As String) As roAssociativeArray: Returns an
associative array with 3 members: "Value," "Minimum," and "Maximum." "Value" is the current value, and the
possible range is specified by "Minimum" and "Maximum."

• GetFormats() As Object

• SetFormat(a As String, b As Integer, c As Integer) As Boolean

• GetCurrentFormat() As String

Example: This script uses the HDMI Input as the video source to create a full-screen display.

v = CreateObject("roVideoPlayer")

i = CreateObject("roVideoInput")

p = CreateObject("roMessagePort")

vm = CreateObject("roVideoMode")

vm.SetMode("1920x1080x60p")

r = CreateObject("roRectangle", 0, 0, 1920, 1080)

v.SetRectangle(r)

v.PlayFile(i)

Example: This script uses the video capture dongle as the video source to create a full-screen display.

v=CreateObject("roVideoPlayer")

i=CreateObject("roVideoInput")

p=CreateObject("roMessagePort")

vm=CreateObject("roVideoMode")

92

vm.SetMode("1280x720x60p")

r = CreateObject("roRectangle", 0, 0, 1280, 720)

v.SetRectangle(r)

i.SetInput("s-video")

i.SetStandard("ntsc-m")

v.PlayFile(i)

93

roVideoMode
This object allows you to configure resolution and other video output settings. The same video resolution is applied to all
video outputs on a BrightSign player. Video or images that are subsequently decoded and displayed will be scaled (using
the hardware scalar) to this output resolution if necessary.

You can also use roVideoMode.GetHdmiInputStatus() to retrieve information about the HDMI input on the XD1230.
The roVideoMode object sends an roHdmiInputChanged object whenever the hotplug status of the HDMI input changes.

Interfaces: ifVideoMode, ifSetMessagePort

The ifVideoMode interface provides the following:

• SetMode(mode As String) As Boolean: Sets the video output mode. If the specified video mode is different
from the current video mode of the object, the unit will reboot and change the video mode to the new setting during
system initialization. The supported video modes are listed in the Video Resolutions FAQ. This method also
accepts "auto" as a mode parameter. For HDMI output, the video profile can also be included in the passed
resolution string using the following format: “<resolution>:<color_space>:<depth>bit”. For example, to output 4Kp60
at the 4:2:0 color space with 10 bits of depth, you would pass the string “3840x2160x60p:420:10bit”.

Note: BrightSign hardware has a video anti-aliasing low-pass filter that is set automatically.
• SetModeForNextBoot(video_mode As String) As Boolean: Specifies the target video mode of the

device the next time it reboots. Once a video mode is specified using SetMode(), it can only be changed by a
device reboot.

• Set3dMode(mode As Integer) As Boolean: Sets the 3D video output mode, which is specified by passing
one the following parameters:
o 0: Standard mono video (default)
o 1: Side-by-side stereo video
o 2: Top-and-bottom stereo video

http://support.brightsign.biz/entries/275113-What-video-output-resolutions-are-supported-by-BrightSign-players-�
http://support.brightsign.biz/entries/67089524-What-4K-video-profiles-can-4Kx42-players-output-over-HDMI-�

94

• GetBestMode(connector As String) As String
• GetMode() As String: Returns the current video mode of the device, which is specified using the SetMode()

method.
• GetModeForNextBoot() As String: Returns the target video mode of the device the next time it reboots. The

return value is specified with the SetModeForNextBoot() method.
• Screenshot(parameters As roAssociativeArray) As Boolean: Captures a screenshot of the video

and graphics layer as a .jpeg or .bmp file in the temp:/ directory. The screenshot process is configured by passing
an associative array of parameters to the method:
o filename: The name of the image file that will be saved.
o Width: The width dimension of the image file.
o Height: The height dimension of the image file.
Note: The default dimensions of the image file is 640x480.
o filetype: A string determining whether the image is a "JPEG" or "BMP" file type.
o quality: An integer value (between 0 and 100) that determines the image quality of the screenshot. This

parameter is set to 50 by default.
o Async: An integer value that determines whether the screenshot should be taken synchronously or

asynchronously. If set to 0, the function returns True after the image file has successfully finished writing. If
set to 1, the function will return True prior to saving the file, then return an roScreenShotComplete event
once the file has finished writing.

• GetResX() As Integer: Returns the current width of the graphics plane.
• GetResY() As Integer: Returns the current height of the graphics plane.
• GetVideoResX() As Integer: Returns the current width of the video plane.
• GetVideoResY() As Integer: Returns the current height of the video plane.
• GetOutputResX() As Integer: Returns the width of the display for the current video mode.
• GetOutputResY() As Integer: Returns the height of the display for the current video mode.
• GetSafeX() As Integer: Returns the horizontal coordinate for the upper-left corner of the "safe area". For

modes that are generally displayed with no overscan, this will be zero.

95

• GetSafeY() As Integer: Returns the vertical coordinate for the upper-left corner of the "safe area". For
modes that are generally displayed with no overscan, this will be zero.

• GetSafeWidth() As Integer: Returns the width of the "safe area." For modes that are generally displayed
with no overscan, this will return the same as GetResX.

• GetSafeHeight() As Integer: Returns the height of the "safe area." For modes that are generally displayed
with no overscan, this will return the same as GetResY.

Note: More information about safe areas can be found here:
o http://en.wikipedia.org/wiki/Safe_area
o http://en.wikipedia.org/wiki/Overscan_amounts

• SetGraphicsZOrder(order As String): Specifies the order of the graphics plane (which includes all
graphical elements) in relation to the video plane(s). This method accepts three parameters:
o front: Places the graphics plane in front of the video plane(s).
o middle: Places the graphics plane between two video planes. This option is only applicable to XD models

that support two video players.
o back: Places the graphics plane behind the video plane(s).

If the player is rendering two videos, the front and back options will always place the graphics plane in front of or
behind both video planes. To determine the z-order of video planes in relation to one another, use the ToFront()
and ToBack() methods provided by the roVideoPlayer object. The following table shows all possible video and
graphics z-order arraignments that can be specified using the SetGraphicsZOrder() method and calling
ToFront() and ToBack() methods on a "Video1" roVideoPlayer instance.

SetGraphicsZOrder() front middle back

ToFront()/ToBack() ToFront() ToBack() ToFront() ToBack() ToFront() ToBack()

Z-Order
Graphics Graphics Video1 Video2 Video1 Video2
Video1 Video2 Graphics Graphics Video2 Video1
Video2 Video1 Video2 Video1 Graphics Graphics

http://en.wikipedia.org/wiki/Safe_area�
http://en.wikipedia.org/wiki/Overscan_amounts�

96

• AdjustGraphicsColor(parameters As roAssociativeArray) As Boolean: Adjusts the video and
graphics output of the player using the following parameters, which can be passed to the method as an associative
array: "brightness", "hue", "contrast", "saturation". Each parameter has a default value of 0 and can accept a range
of values between -1000 and 1000.

• GetHdmiInputStatus() As roAssociativeArray: Returns an associative array of roInt objects if an HDMI
input is currently connected to the device (XD1230 only). This method will return Invalid if there is currently no
HDMI input source. The array contains the following parameters:

o width: Lists the pixel width of the video input.
o height: Lists the pixel height of the video input.
o interlaced: Returns 1 if the video input is interlaced, 0 if it is not interlaced.
o device_present: Returns 1 if there is an HDMI input device present, 0 if there is no HDMI input device

present.
• SetBackgroundColor(a As Integer) As Boolean: Specifies the background color using an #rrggbb hex

value.
• SetPowerSaveMode(power_save_enable As Boolean) As Boolean: Turns off the syncs for VGA output

and the DAC output for component video. This will cause some monitors to go into standby mode.
• EnableVideo(enable As Boolean) As Boolean: Enables video output from the device if True. Setting this

method to False disables all video output from the device. This method is set to True by default.
• IsAttached(connector As String) As Boolean: Returns True if the specified video connector is attached

to an output device. This method can be passed the following parameters (note that they are case sensitive):
o "hdmi"
o "vga"

• HdmiAudioDisable(disable As Boolean) As Boolean: Disables audio output if True. This method is set
to False by default.

• SetMultiscreenBezel(x_pct As Integer, y_pct As Integer) As Boolean: Adjusts the size of the
bezel used in calculations when using multiscreen displays for video and images. It allows users to compensate for
the width of their screen bezels in multiscreen configurations. The calculations for the percentages are as follows:

97

x_percentage = (width_of_bezel_between_active_screens / width_of_active_screen) * 100

y_percentage = (height_of_bezel_between_active_screens / height_of_active_screen) * 100

The bezel measurement is therefore the total of the top and bottom bezels in the y case, or the left and right bezels
in the x case. When this value is set correctly, images spread across multiple screens take account of the bezel
widths, leading to better alignment of images.

• SaveEdids(filename As String) As Boolean: Saves the EDID information of the display(s) connected via
HDMI and/or VGA. The EDID fields are saved sequentially as raw binaries into the specified file. The EDID sets are
two 2kb each, resulting in a maximum file size of 4kb. This method returns True upon success and False upon
failure.

• GetEdidIdentity(a As Boolean) As roAssociativeArray: Returns an associative array with EDID
information from a compatible monitor/television connected over HDMI. These are the possible parameters:

o serial_number_string

o year_of_manufacture

o monitor_name

o manufacturer

o text_string

o serial_number

o product

o week_of_manufacture

The system will generate an roHdmiEdidChanged event when an HDMI cable is hotplugged and the EDID
information changes. Calling GetEdidIdentity(1) at this point retrieves the new EDID information.

98

The ifSetMessagePort interface provides the following:
• SetPort(obj As Object) As Void

"Auto" Video Mode
If the mode is set to "auto," the BrightSign player will try to determine the best video mode to use based on connected
hardware. The algorithm is as follows:

1. Try VGA first – If VGA is attached, use the highest-resolution mode (as reported by the monitor) that BrightSign
supports.

2. Try HDMI next – If HDMI is attached, use the highest-resolution mode (as reported by the monitor) that BrightSign
supports.

3. Default to 1024x768x75p.

99

roVideoPlayer
This object is used to play back video files (using the generic ifMediaTransport interface). If the message port is set, the
object will send events of the type roVideoEvent. All object calls are asynchronous. That is, video playback is handled in a
different thread from the script, and the script will continue to run while video is playing. Decoded video will be scaled to
the output resolution specified by roVideoMode.

Interfaces: ifIdentity, ifSetMessagePort, ifAudioControl, ifAudioAuxControl, ifVideoControl, ifMediaTransport.

The ifIdentity interface provides the following:

• GetIdentity() As Integer

The ifSetMessagePort interface provides the following:

• SetPort(roMessagePort As Object) As Void

See roAudioPlayer for documentation of ifAudioControl.

The ifAudioAuxControl interface provides the following:
• MapStereoOutputAux(mapping As Integer) As Boolean

• SetVolumeAux(a As Integer) As Boolean

• SetChannelVolumesAux(channel_mask As Integer, b As Integer) As Boolean

• SetAudioOutputAux(audio_output As Integer) As Boolean

• SetAudioModeAux(audio_mode As Integer) As Boolean

• SetAudioStreamAux(stream_index As Integer) As Boolean

• SetUsbAudioPortAux(a As Integer) As Boolean

100

The ifVideoControl interface provides the following:
• PlayStaticImage(filename As String) As Boolean

• SetViewMode(mode As Integer) As Boolean

• SetRectangle(r As roRectangle) As Void

• EnableSafeRegionTrimming(a As Boolean) As Boolean

• AdjustVideoColor(parameters As roAssociativeArray) As Boolean: Adjusts the video and graphics
output of the player using the following parameters, which can be passed to the method as an associative array:
"brightness", "hue", "contrast", "saturation". Each parameter has a default value of 0 and can accept a range of
values between -1000 and 1000.

• SetKeyingValue(keying_settings As roAssociativeArray) As Boolean: Applies a mask to each
pixel in the video window. If the pixel value falls within the specified range of chroma and luma key values, the pixel
will appear transparent, allowing video and graphics behind it to show through. If the pixel value does not fall within
the specified range, the pixel is unaltered. The chroma and luma key values are set using integers contained in the
passed associative array:
o luma

o cr

o cb

Each integer value is arranged as follows: [8 bits of mask][8 bits of high-end range][8 bits of
low-end range]. For example, an 0xff8040 value for luma would mask luma at 0xff (no change) and then apply
a range from 0x40 to 0x80 for changing to transparent alpha.

Note: Chroma and luma keying work well with simple shapes and patterns; complex patterns like hair or grass will not
be masked effectively.
• SetTransform(transform As String) As Boolean: Applies one of eight transforms to the video plane.

This method works equally well with all video sources (files, streams, HDMI input) and can be called separately on
multiple roVideoPlayer instances. Calls to this method only take effect when the next file/source is played, and
transitions to a transformed video do not take place seamlessly.
o identity: No transformation (default behavior)

101

o rot90: 90 degree clockwise rotation
o rot180: 180 degree rotation
o rot270: 270 degree clockwise rotation
o mirror: Horizontal mirror transformation
o mirror_rot90: Mirrored 90 degree clockwise rotation
o mirror_rot180: Mirrored 180 degree clockwise rotation
o mirror_rot270: Mirrored 270 degree clockwise rotation

• GetFilePlayability(filename As String) As roAssociativeArray: Returns an associative array
indicating the playability of the video file. For the following keys, a "playable" value indicates that the component is
playable, while a "no media" value indicates that there is no media—any other value indicates that the media is
unplayable.
o audio: The audio file associated with the video
o video: The video file associated with the video
o file: The video container file

• GetProbePlayability(probe_string As String) As roAssociativeArray: Returns an associative
array indicating the playability of the probe string. For the following keys, a "playable" value indicates that the
component is playable, while a "no media" value indicates that there is no media—any other value indicates that
the media is unplayable.
o audio: The audio file associated with the video
o video: The video file associated with the video
o file: The video container file

• SetPreferredVideo(description As String) As Boolean: Chooses a video stream from the video
input based on the parameters in the passed string.

• SetPreferredAudio(description As String) As Boolean: Chooses an audio stream from the video
input based on the parameters in the passed string.

• SetPreferredCaptions(description As String) As Boolean: Chooses a data stream from the video
input based on the parameters in the passed string.

102

The ifMediaTransport interface provides the following:

• PlayFile(source As Object) As Boolean: Plays a video file or HDMI Input. To play a file, pass a string
specifying the file name and path. To play HDMI Input, pass an roVideoInput instance.

• PlayFile(parameters As roAssociativeArray) As Boolean: Plays video using the parameters passed
as an associative array. This method is used to play synchronized video using the parameters provided by the
roSyncManager object. Alternatively, this method can be used to tune to and play an RF Input channel using the
associative array provided by the roChannelManager.CreateChannelDescriptor() method.

• SetPlaybackSpeed(speed as Float) As Boolean: Modulates the playback speed of the video, using the
float 1.0 as the value for standard playback speed. To fast-forward the video, pass a value greater than 1.0; to
rewind the video, pass a negative value. A value between 0 and 1.0 will the play the video in slow motion.

• PreloadFile(parameters As roAssociativeArray) As Boolean

• Stop() As Boolean

• Play() As Boolean

• SetLoopMode(mode As Integer) As Boolean

• ClearEvents() As Boolean

• AddEvent(user_data As Integer, time_in_ms As Integer) As Boolean

• StopClear() As Boolean

• Pause(parameters As roAssociativeArray) As Boolean: Pauses the video. This method accepts an
optional associative array containing the following parameter:
o SyncIsoTimeStamp: The time stamp for pausing synchronized video. This value is provided by the

roSyncManager.Synchronize() method on the master unit and the roSyncManagerEvent.GetIsoTimeStamp()
method on slave unit(s).

• Resume(parameters As roAssociativeArray) As Boolean: Resumes a paused video. This method
accepts an optional associative array containing the following parameter:

103

o SyncIsoTimeStamp: The time stamp for resuming synchronized video. This value is provided by the
roSyncManager.Synchronize() method on the master unit and the roSyncManagerEvent.GetIsoTimeStamp()
method on slave unit(s).

• PlayEx(a As Object) As Boolean: This object has been deprecated. We suggest using the PlayFile()
method for video playback instead.

• Seek(position As Integer) As Boolean: Seeks to the specified position in the audio/video file(measured
in milliseconds). If the file is currently playing, then it will continue to play; otherwise, it will remain paused after
seeking. This method only supports the MP4/MOV video container; all standard audio formats are supported.

• SetFade(parameters As roAssociativeArray) As Boolean: Fades out both the video and audio at the
end of a video file. Once the fade is complete, the method posts the following roVideoEvent to the message port:
18 FADED_OUT. This method accepts an associative array, which can currently contain only one parameter:
o FadeOutLength: The length of time (in milliseconds) over which the audio/video fades out. This amount is

measured backwards from the end of the video file.

The ifZorderControl interface provides the following:

• ToFront() As Boolean: Places the video layer of the roVideoPlayer instance in front of the other video player.
• ToBack() As Boolean: Places the video layer of the roVideoPlayer instance behind the other video player.
Note: This feature is not available on HD players, which only support a single video player. For more information on
ordering video layers relative to the graphics layer, refer to the roVideoMode.SetGraphicsZOrder entry.

If you wish to use a view mode different from the default, you must set it prior to starting video playback.

view_mode values:
 0 – Scale to fill (default). The aspect ratio can change.
 1 – Letterboxed and centered. The aspect ratio is maintained, and the video has black borders.
 2 – Full screen and centered. The aspect ratio is maintained and the screen is filled.

104

To display the video in a zone, SetRectangle must be called. EnableZoneSupport must be called to use the zones
functionality.

MPEG2 video files are encoded with a specific aspect ratio, and output display resolutions have an aspect ratio. Video
display modes 1 and 2 use these aspect ratios to ensure that the video-file aspect ratio is preserved when it is displayed.
This will fail only when a widescreen monitor displays a 4:3 output resolution such as 800x600 across the whole screen
(i.e. the monitor does not respect the aspect ratio). Please note that this feature relies on the correct aspect ratio marking
of the MPEG2 video files. Unfortunately, not all files are marked correctly.

Users can add events that trigger messages of the roVideoEvent Timecode Hit at the specified millisecond times in a
video file. The data field of the roVideoEvent holds the user data passed in with AddEvent().

Example: This script uses timecode events. The script prints out 2, 5, and 10 into the video at 2 seconds, 5 seconds, and
10 seconds. The msg is approaching frame accurate.

10 v = CreateObject("roVideoPlayer")

20 p = CreateObject("roMessagePort")

30 v.SetPort(p)

40 ok = v.AddEvent(2, 2000) ' Add timed events to video

50 ok = v.AddEvent(5, 5000)

60 ok = v.AddEvent(10, 10000)

70 ok = v.AddEvent(100, 100000)

80 ok = v.PlayFile("SD:/C5_d5_phil.vob")

90 msg = Wait(0,p) ' Wait for all events

95 if msg.GetInt() = 8 then stop ' End of file

100 if msg.GetInt() <> 12 goto 90 ' I only care about time events

105

110 print msg.GetData() ' Print out index when the time event happens

120 goto 90

Calling PlayStaticImage() displays an image on the video layer. The image is stretched to fill the video rectangle.

Multiscreen video playback
We have also added some overloaded PreloadFile and PlayFile functions. These take a roAssociativeArray as a
parameter, which stores all the various options to be passed in. They must be used when displaying images across
multiple screens in an array, or displaying windowed portions of a video, though they can also be used in place of the
original function calls.

Example: This script uses the PreloadFile for a multiscreen display:

v=CreateObject("roVideoPlayer")

a=CreateObject("roAssociativeArray")

a["Filename"] = "test.ts"

a["MultiscreenWidth"] = 3

a["MultiscreenHeight"] = 2

a["MultiscreenX"] = 0

a["MultiscreenY"] = 0

v.PreloadFile(a)

…

…

v.Play()

106

The filename is the same as documented earlier, but the multiscreen parameters are new. MultiscreenWidth and
MultiscreenHeight specify the width and height of the multiple-screen matrix. For example, 3x2 would be 3 screens wide
and 2 high. MultiscreenX and MultiscreenY specify the position of the current screen within that matrix. In the case above,
on average only 1/6th of the video is drawn on each screen (though the view mode still applies), so depending on the
shape of the video, it may have black bars on the side screens. In this way, it is relatively simple for a video player to
display part of an image based on its position in the multiscreen array.

PreloadFile does all of the preliminary work to get ready to play the specified video clip, including stopping the playback of
the previous video file. The call to "Play" starts the playback. This is good for synchronizing video across multiple players
as they can all be prepared ready to play and then will immediately start playing when the "Play" command is issued. This
reduces synchronization latencies.

The following are the default values for the parameters:

• MultiscreenWidth = 1
• MultiscreenHeight = 1
• MultiscreenX = 0
• MultiscreenY = 0

Example: Here is a script using PlayFile for displaying a portion of a video:

v=CreateObject("roVideoPlayer")

a=CreateObject("roAssociativeArray")

a["Filename"] = "test.ts"

a["SourceX"] = 100

a["SourceY"] = 100

a["SourceWidth"] = 1000

107

a["SourceHeight"] = 500

v.PlayFile(a)

This displays a windowed portion of the test.ts video file starting at coordinates SourceX, SourceY, and SourceWidth by
SourceHeight in size. The viewmode is still honored as if displaying the whole file.

RF Channel Scanning
The PlayFile() method can be used for channel scanning and handling functionality similar to roChannelManager. To
use PlayFile() for channel scanning, pass an roAssociativeArray with the following possible parameters:

• VirtualChannel

• RfChannel

• SpectralInversion
o INVERSION_ON

o INVERSION_OFF

o INVERSION_AUTO

• ModulationType
o QAM_64

o QAM_256

o QAM_AUTO

o 8VSB

• VideoCodec
o MPEG1-Video

o MPEG2-Video

o MPEG4Part2-Video

o H264

o H264-SVC

108

o H264-MVC

o AVSC

• AudioCodec
o MPEG-Audio

o AAC

o AAC+

o AC3

o AC3+

o DTS

• VideoPid

• AudioPid

• PcrPid

The VirtualChannel and RfChannel parameters must be present for PlayFile() to scan correctly. If you specify only
these parameters, the player will scan the RF channel for a QAM/ATSC signal and attempt to retrieve the specified virtual
channel from the results. The results from this action are cached so that subsequent calls to PlayFile() will take much less
time. Providing the SpectralInversion and/or ModulationType parameters will further speed up the scanning
process.

If all parameters are supplied, then no scanning is required and the player can tune to the channel immediately. If one or
more of the optional parameters is missing, then the player must parse the transport stream metadata to find the
appropriate values for the supplied VirtualChannel and RfChannel.

Preferred Streams
If multiple video, audio, or data streams are encapsulated in the video input, you can use the SetPreferredVideo(),
SetPreferredAudio(), and SetPreferredCaptions() methods to determine which stream to use. For example, if

109

a video may contain English and Spanish audio tracks, you can call SetPreferredAudio() to specify that the Spanish
track should be played if it exists, with the video defaulting to English otherwise.

Preferred streams are chosen by matching the patterns in the passed string(s) against the textual description of the
stream:

1. The passed string is a semicolon-separated list of templates.
2. Each template is a comma-separated list of patterns.
3. Each pattern is a [field_name]=[field_value] pair that is matched directly against the stream description.

SetPreferredVideo(description As String) As Boolean

Each template in the passed video description string can contain the following patterns:
• pid=[integer]: The packet identifier (PID) of the video stream you wish to display
• codec=[video_codec]: The preferred video codec, which can be any of the following:

o MPEG1
o MPEG2
o MPEG4Part2
o H263
o H264
o VC1
o H265

• width=[integer]: The preferred video width
• height=[integer]: The preferred video height
• aspect=[float(x.yy)]: The preferred aspect ratio of the video stream as a floating-point number with two

fractional digits.
• colordepth=[integer]: The preferred color depth of the video.

110

Example:

"pid=7680, codec=H264, width=1280, height=720, aspect=1.78, colordepth=8;;"

SetPreferredAudio(description As String) As Boolean

Each template in the passed description string can contain the following patterns:
• pid=[integer]: The packer identifier (PID) of the audio stream you wish to play
• codec=[audio_codec]: The preferred audio codec, which can be any of the following:

o MPEG
o MP3
o AAC
o AAC-PLUS
o AC3
o AC3-PLUS
o DTS
o PCM
o FLAC
o Vorbis

• channels=[integer]: The preferred number of audio channels (from 1 to 8)
• freq=[frequency]: The preferred sample frequency of the audio track, which can be any of the following:

o 32000
o 44100
o 4800

• lang=[language]: A code that determines the preferred language of the audio track (e.g. eng, spa). The
language codes are specified in the ISO 639-2 standard.

• type=[audio_type]: The preferred audio type, which can be one of the following:
o Main audio

111

o Clean effects
o Hearing impaired
o Visual impaired commentary

Example:

“pid=4192, codec=AC3, channels=5, freq=48000, lang=eng, type=Main audio;;"

SetPreferredCaptions(description As String) As Boolean

Each template in the passed description string can contain the following patterns:
• pid=[integer]: The packer identifier (PID) of the caption stream you wish to play
• type=[subtitle_type]: The encoding standard of the subtitles. This value can be one of the following:

o CEA708: If the CEA-708 standard is not present, the subtitle_type will default to CEA-608 (if it is
present).

o CEA608
o DVB

• lang=[language]: A code that determines the preferred language of the subtitles (e.g. eng, spa). The language
codes are specified in the ISO 639-2 standard.

• service=[integer]: The preferred service number of the caption stream

Example:

"pid=0, type=Cea708, lang=eng service=1;;"

Note the following rules when matching templates to video, audio, or caption stream descriptions:
• For a template to match a stream description, every pattern within the template must match.
• The first listed template to match the stream description (if any) will be used.
• An empty template string will match any stream description.

112

• All value comparisons are case-insensitive, and all integer values must have no leading zeroes.
• Numerical values must match the stream description exactly. For example, the pattern pid=016 will never match

the stream PID value of 16.
• To indicate logical negation, apply the "!" exclamation mark to the beginning of a pattern. For example, specifying

SetPreferredVideo("!codec=H265") will match only streams that are not encoded using H.265.
• Apply the ">" greater-than symbol before an integer to indicate that, for a successful match, the value in the stream

description must be greater than the value following the symbol. For example, specifying
SetPreferredVideo("width=<1921,height=<1081") will match only videos that are no larger than full-HD.

• Apply the "<" less-than symbol before an integer to indicate that, for a successful match, the value in the stream
description must be less than the value following the symbol.

The following examples illustrate some of the pattern matching behavior described above:

• The following template list contains three patterns: lang=eng, lang=spa, and an empty template. The first pattern
specifies an English language channel; if the English channel does not exist, the second pattern specifies a
Spanish language channel. The third pattern specifies any other channel if the first two don't exist (the empty
template matches anything).

SetPreferredAudio("lang=eng;lang=spa;;")

• Since the following template list is empty, no captions are specified. This can be used to disable captions
altogether.

SetPreferredCaptions("")

• The following template list contains an empty template. Since an empty template matches anything, the first video
stream encountered will be played. This is the default behavior of all attributes.

SetPreferredVideo(";")

113

• The following template list specifies a 48KHz audio stream if there is one; otherwise, no audio stream will be played.
Observe that the list is not correctly terminated with a semicolon; in this case, the semi-colon is implicitly supplied.

SetPreferredAudio("freq=48000")

• The following template list contains two templates. Note that all patterns within a template must match the stream
description for the entire template to match. In this example, an AAC-encoded English track is preferred; an MP3-
encoded English track is designated as the second option; and any track will be chosen if neither template is
matched.

SetPreferredAudio("codec=aac,lang=eng;codec=mp3,lang=eng;;")

114

roTouchCalibrationEvent

Interfaces: ifInt, ifIntOps

The ifInt interface provides the following:

• GetInt() As Integer

• SetInt(a As Integer)

The ifIntOps interface provides the following:

• ToStr() As String

115

roTouchEvent

Interfaces: ifInt, ifPoint, ifEvent

The ifInt interface provides the following:

• GetInt() As Integer

• SetInt(a As Integer)

The ifPoint interface provides the following:

• GetX() As Integer

• GetY() As Integer

• SetX(a As Integer)

• SetY(a As Integer)

The ifEvent interface provides the following:
• GetEvent() As Integer

• SetEvent(a As Integer)

116

roTouchScreen
This object allows you to accept events from touchscreen panels or mice. Not all touchscreens are supported. However,
we are always working on more driver support. Please see this FAQ for a full list of supported touchscreens, or
contact sales@brightsign.biz if you want to know whether a specific touch-screen model supported.

An roTouchScreen instance responds to the clicks of a USB mouse in the same way it responds to touch events on a
touchscreen.

To use a touchscreen, follow these general steps:

1. Create an roTouchScreen object.
2. Use SetPort() to specify which roMessagePort should receive touch events.
3. Define one or more touch regions.

a. A touch region may be rectangular or circular.
b. When someone touches the screen anywhere inside the area of a touch region, an event will be sent to the

message port.
4. Process the events.

Note: If touch areas overlap such that a touch hits multiple regions, an event for each affected region will be sent.

The roTouchScreen object supports rollover regions. Rollovers are based around touch regions. When a rectangular or
circular region is added, it defaults to having no rollover. You can enable a rollover using the touch region’s ID and
specifying an on and off image. Whenever the mouse cursor is within that region, the on image is displayed. In all other
cases, the off image is displayed. This allows buttons to be highlighted as the mouse cursor moves over them.

Interfaces: ifTouchScreen, ifSetMessagePort, ifTouchScreenCalibration, ifSerialControl

http://support.brightsign.biz/entries/262256-Which-touchscreens-can-I-use-with-BrightSign-players-�
mailto:sales@rokulabs.com�

117

The ifTouchScreen interface provides the following:
• SetResolution(x As Integer, y As Integer) As Void
• AddRectangleRegion(x As Integer, y As Integer, w As Integer, h As Integer, userid As

Integer) As Void
• AddCircleRegion(x As Integer, y As Integer, radius As Integer, userid As Integer) As

Void
• ClearRegions(): Clears the list of regions added using AddRectangleRegion() or AddCircleRegion() so

that any contacts in those regions no longer generate events. This call has no effect on the rollover graphics.
• GetDeviceName() As String

• SetCursorPosition(x As Integer, y As Integer) As Void

• SetCursorBitmap(filename As String, x As Integer, y As Integer) As Void: Specifies a BMP
or PNG file as the mouse cursor icon. This method also accepts a "hot spot" (i.e. the point within the icon rectangle
that will trigger events when the mouse is clicked) as a set of x,y coordinates. The icon can be a rectangle of any
width or height. The colors are specified internally in YUV (6-4-4 bits respectively), but pixels in the passed image
file can be one of 16 different colors. These colors are 16 bits, with 14 bits of color and 2 bits of alpha. If you use all
of the alpha levels on all shades, then you limit the number of available shades to five (five shades at three alpha
levels plus one fully transparent color gives 16).

• EnableCursor(enable As Boolean) As Void

• EnableRollover(region_id As Integer, on_image As String, off_image As String,

cache_image As Boolean, image_player As Object) As Void: Enables a rollover for a touch region.
The function accepts the ID of the touch region, as well as two strings specifying the names of the on and off
bitmap images, a cache setting, and the image player that draws the rollover. The cache_image parameter simply
tells the script whether to keep the bitmaps loaded in memory or not. This setting uses up memory very quickly, so
we recommend that cache_image normally be set to 0.

• EnableRegion(region_id As Integer, enabled As Boolean) As Void: Enables or disables a rollover
region. The function accepts the ID of the touch region, as well as a Boolean value (True or False). The rollover

118

regions default to "enabled" when created, but you can set up all of the regions at the start of your script and then
enable the current ones when required.

• SetRollOverOrigin(region_id As Integer, x As Integer, y As Integer) As Void: Changes
the origin so that more (or less) of the screen changes when the mouse rolls in and out of the region. This means
that bitmaps that are larger than the region can be drawn. The default requirement is that rollover bitmaps be the
same size and position as the touch region. Note that the bitmap is square for circular regions. The default origin
for circular regions is x - r, y – r, where x, y is the center and r is the radius.

• IsMousePresent() As Boolean: Returns whether a relative pointing device is attached or not.
Note: This does not work for absolute devices like touchscreens.
• EnableSerialTouchscreen(a As Integer) As Boolean

• SetSerialTouchscreenConfiguration(a As String) As Boolean

• GetDiagnosticInfo() As String: Returns an HTML string with captured information describing hardware
that was connected and events that occurred during the calibration process. This method is used by the calibration
script to diagnose touchscreen issues.

The ifSetMessagePort interface provides the following:
• SetPort(a As Object)

The ifTouchScreenCalibration interface provides the following:
• StartCalibration() As Boolean

• GetCalibrationStatus() As Integer

The ifSerialControl interface provides the following:

• SetBaudRate(baud_rate As Integer) As Boolean: Sets the baud rate of the device. The supported baud
rates are as follows: 50, 75, 110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800, 9600, 19200, 38400, 57600,
115200, 230400.

• NotUsed1(a As String)

119

• SetMode(a As String) As Boolean

• NotUsed2(a As Boolean) As Boolean

The roTouchScreen interface sends events of type roTouchEvent, which provides the following:
• ifInt: The userid of the touched region.
• ifPoint: The x,y coordinates of the touch point. This interface is not normally needed. ifPoint has two member

functions: GetX As Integer and GetY As Integer.
• ifEvent: The mouse events. ifEvent has one member function: GetEvent() As Integer.

Example: This code loops a video and waits for a mouse click or touchscreen input. It outputs the coordinates of the click
or touch to the shell if it is located within the defined region.

v=CreateObject("roVideoPlayer")

t=CreateObject("roTouchScreen")

p=CreateObject("roMessagePort")

v.SetPort(p)

t.SetPort(p)

v.SetLoopMode(1)

v.PlayFile("testclip.mp2v")

t.AddRectangleRegion(0,0,100,100,2)

loop:

 msg=Wait(0, p)

 print "type: ";type(msg)

 print "msg=";msg

 if type(msg)="roTouchEvent" then

120

 print "x,y=";msg.GetX();msg.GetY()

 endif

 goto loop:

Example: This code includes mouse support.

t=CreateObject("roTouchScreen")

t.SetPort(p)

REM Puts up a cursor if a mouse is attached

REM The cursor must be a 16 x 16 BMP

REM The x,y position is the "hot spot" point

t.SetCursorBitmap("cursor.bmp", 16, 16)

t.SetResolution(1024, 768)

t.SetCursorPosition(512, 389)

REM

REM Pass enable cursor display: TRUE for on, and FALSE for off

REM The cursor will only enable if there is a mouse attached

REM

t.EnableCursor(TRUE)

Example: This code includes a rollover region and mouse support.

img=CreateObject("roImagePlayer")

t=CreateObject("roTouchScreen")

p=CreateObject("roMessagePort")

t.SetPort(p)

121

t.SetCursorBitmap("cursor.bmp", 16, 16)

t.SetResolution(1024, 768)

t.SetCursorPosition(512, 389)

t.EnableCursor(1)

img.DisplayFile("\menu.bmp")

REM Adds a rectangular touch region

REM Enables rollover support for that region

REM Sets the rollover origin to the same position as the touch region REM

t.AddRectangleRegion(0, 0, 100, 100, 1)

t.EnableRollOver(1, "on.bmp", "off.bmp", true, img)

t.SetRollOverOrigin(1, 0, 0)

122

FILE OBJECTS

roAppendFile
This object can be used to create a new file or append information to the end of an existing file.

CreateObject("roAppendFile", filename As String): Creating an roAppendFile object opens an existing
file or creates a new file. The current position is set to the end of the file, and all writes are made to the end of the file.

Interfaces: ifStreamRead, ifStreamSend, ifStreamSeek

The ifStreamRead interface provides the following:

• SetReceiveEol(eol_sequence As String) As Void: Sets the EOL sequence when reading from the
stream.

• ReadByte() As Integer: Reads a single byte from the stream, blocking if necessary. If the EOF is reached or
there is an error condition, then a value less than 0 is returned.

• ReadByteIfAvailable() As Integer: Reads a single byte from the stream if one is available. If no bytes are
available, it returns immediately. A return value less than 0 indicates either that the EOF has been reached or no
byte is available.

• ReadLine() As String: Reads until it finds a complete end of the line sequence. If it fails to find the sequence
within 4096 bytes, then it returns the 4096 bytes that are found. No data is discarded in this case.

• ReadBlock(size As Integer) As String: Reads the specified number of bytes. The number is limited to
65536 bytes. In the event of an EOF or an error, fewer bytes than requested will be returned. Any null bytes in the
file will mask any further bytes.

123

• AtEof() As Boolean: Returns True if an attempt has been made to read beyond the end of the file. If the
current position is at the end of the file, but no attempt has been made to read beyond it, this method will return
False.

The ifStreamSend interface provides the following:
• SetSendEol(eol_sequence As String) As Void: Sets the EOL sequence when writing to the stream.
• SendByte(byte As Integer) As Void: Writes the specified byte to the stream.
• SendLine(string As String) As Void: Writes the specified characters to the stream followed by the

current EOL sequence.
• SendBlock(a As Dynamic) As Void: Writes the specified characters to the stream. This method can support

either a string or an roByteArray. If the block is a string, any null bytes will terminate the block.
• Flush()

• AsyncFlush()

The ifStreamSeek interface provides the following:
• SeekAbsolute(offset As Integer) As Void: Seeks the specified offset. If the offset is beyond the end of

the file, then the file will be extended upon the next write and any previously unoccupied space will be filled with
null bytes.

• SeekRelative(offset As Integer) As Void: Seeks to the specified offset relative to the current position. If
the ultimate offset is beyond the end of the file, then the file will be extended as described in SeekAbsolute().

• SeekToEnd() As Void: Seeks to the end of the file.
• CurrentPosition() As Integer: Retrieves the current position within the file.

124

roCreateFile
This object can be used to write a new file or overwrite an existing file.

CreateObject("roCreateFile", filename As String): Creating an roCreateFile object opens an existing
file or creates a new file. If the file exists, it is truncated to a size of zero.

Interfaces: ifReadStream, ifStreamSend, ifStreamSeek

The ifReadStream interface provides the following:

• SetReceiveEol(eol_sequence As String) As Void: Sets the EOL sequence when reading from the
stream.

• ReadByte() As Integer: Reads a single byte from the stream, blocking if necessary. If the EOF is reached or
there is an error condition, then a value less than 0 is returned.

• ReadByteIfAvailable() As Integer: Reads a single byte from the stream if one is available. If no bytes are
available, it returns immediately. A return value less than 0 indicates either that the EOF has been reached or no
byte is available.

• ReadLine() As String: Reads until it finds a complete end of the line sequence. If it fails to find the sequence
within 4096 bytes, then it returns the 4096 bytes that are found. No data is discarded in this case.

• ReadBlock(size As Integer) As String: Reads the specified number of bytes. The number is limited to
65536 bytes. In the event of an EOF or an error, fewer bytes than requested will be returned. Any null bytes in the
file will mask any further bytes.

• AtEof() As Boolean: Returns True if an attempt has been made to read beyond the end of the file. If the
current position is at the end of the file, but no attempt has been made to read beyond it, this method will return
False.

The ifStreamSend interface provides the following:

125

• SetSendEol(eol_sequence As String) As Void: Sets the EOL sequence when writing to the stream.
• SendByte(byte As Integer) As Void: Writes the specified byte to the stream.
• SendLine(string As String) As Void: Writes the specified characters to the stream followed by the

current EOL sequence.
• SendBlock(a As Dynamic) As Void: Writes the specified characters to the stream. This method can support

either a string or an roByteArray. If the block is a string, any null bytes will terminate the block.
• Flush()

• AsyncFlush()

The ifStreamSeek interface provides the following:
• SeekAbsolute(offset As Integer) As Void: Seeks the specified offset. If the offset is beyond the end of

the file, then the file will be extended upon the next write and any previously unoccupied space will be filled with
null bytes.

• SeekRelative(offset As Integer) As Void: Seeks to the specified offset relative to the current position. If
the ultimate offset is beyond the end of the file, then the file will be extended as described in SeekAbsolute().

• SeekToEnd() As Void: Seeks to the end of the file.
• CurrentPosition() As Integer: Retrieves the current position within the file.

126

roReadFile
This object opens and reads a specified file.

Object Creation: Creating an roReadFile object opens the specified file for reading only. Object creation fails if the file
does not exist.

CreateObject("roReadFile", filename As String)

Interfaces: ifStreamRead, ifStreamSend, ifStreamSeek

The ifStreamRead interface provides the following:

• SetReceiveEol(eol_sequence As String) As Void: Sets the EOL sequence when reading from the
stream.

• ReadByte() As Integer: Reads a single byte from the stream, blocking if necessary. If the EOF is reached or
there is an error condition, then a value less than 0 is returned.

• ReadByteIfAvailable() As Integer: Reads a single byte from the stream if one is available. If no bytes are
available, it returns immediately. A return value less than 0 indicates either that the EOF has been reached or no
byte is available.

• ReadLine() As String: Reads until it finds a complete end of the line sequence. If it fails to find the sequence
within 4096 bytes, then it returns the 4096 bytes that are found. No data is discarded in this case.

• ReadBlock(size As Integer) As String: Reads the specified number of bytes. The number is limited to
65536 bytes. In the event of an EOF or an error, fewer bytes than requested will be returned. Any null bytes in the
file will mask any further bytes.

• AtEof() As Boolean: Returns True if an attempt has been made to read beyond the end of the file. If the
current position is at the end of the file, but no attempt has been made to read beyond it, this method will return
False.

127

The ifStreamSend interface provides the following:
• SetSendEol(eol_sequence As String) As Void: Sets the EOL sequence when writing to the stream.
• SendByte(byte As Integer) As Void: Writes the specified byte to the stream.
• SendLine(string As String) As Void: Writes the specified characters to the stream followed by the

current EOL sequence.
• SendBlock(a As Dynamic) As Void: Writes the specified characters to the stream. This method can support

either a string or an roByteArray. If the block is a string, any null bytes will terminate the block.
• Flush()

• AsyncFlush()

The ifStreamSeek interface provides the following:
• SeekAbsolute(offset As Integer) As Void: Seeks the specified offset. If the offset is beyond the end of

the file, then the file will be extended upon the next write and any previously unoccupied space will be filled with
null bytes.

• SeekRelative(offset As Integer) As Void: Seeks to the specified offset relative to the current position. If
the ultimate offset is beyond the end of the file, then the file will be extended as described in SeekAbsolute.

• SeekToEnd() As Void: Seeks to the end of the file.
• CurrentPosition() As Integer: Retrieves the current position within the file.

128

roReadWriteFile
The object opens a file and allows both reading and writing operations on that file.

Object Creation: Creating an roReadWriteFile object opens an existing file for both reading and writing. Object creation
fails if the file does not exist. The current position is set to the beginning of the file.

CreateObject("roReadWriteFile", filename As String)

Interfaces: ifReadStream, ifStreamSend, ifStreamSeek

The ifReadStream interface provides the following:

• SetReceiveEol(eol_sequence As String) As Void: Sets the EOL sequence when reading from the
stream.

• ReadByte() As Integer: Reads a single byte from the stream, blocking if necessary. If the EOF is reached or
there is an error condition, then a value less than 0 is returned.

• ReadByteIfAvailable() As Integer: Reads a single byte from the stream if one is available. If no bytes are
available, it returns immediately. A return value less than 0 indicates either that the EOF has been reached or no
byte is available.

• ReadLine() As String: Reads until it finds a complete end of the line sequence. If it fails to find the sequence
within 4096 bytes, then it returns the 4096 bytes that are found. No data is discarded in this case.

• ReadBlock(size As Integer) As String: Reads the specified number of bytes. The number is limited to
65536 bytes. In the event of an EOF or an error, fewer bytes than requested will be returned. Any null bytes in the
file will mask any further bytes.

• AtEof() As Boolean: Returns True if an attempt has been made to read beyond the end of the file. If the
current position is at the end of the file, but no attempt has been made to read beyond it, this method will return
False.

129

The ifStreamSend interface provides the following:
• SetSendEol(eol_sequence As String) As Void: Sets the EOL sequence when writing to the stream.
• SendByte(byte As Integer) As Void: Writes the specified byte to the stream.
• SendLine(string As String) As Void: Writes the specified characters to the stream followed by the

current EOL sequence.
• SendBlock(a As Dynamic) As Void: Writes the specified characters to the stream. This method can support

either a string or an roByteArray. If the block is a string, any null bytes will terminate the block.
• Flush()

• AsyncFlush()

The ifStreamSeek interface provides the following:
• SeekAbsolute(offset As Integer) As Void: Seeks the specified offset. If the offset is beyond the end of

the file, then the file will be extended upon the next write and any previously unoccupied space will be filled with
null bytes.

• SeekRelative(offset As Integer) As Void: Seeks to the specified offset relative to the current position. If
the ultimate offset is beyond the end of the file, then the file will be extended as described in SeekAbsolute().

• SeekToEnd() As Void: Seeks to the end of the file.
• CurrentPosition() As Integer: Retrieves the current position within the file.

130

HASHING AND STORAGE OBJECTS

roBlockCipher
This object provides a means for symmetric block encryption. It currently supports AES and CBC ciphers, at block sizes of
128, 192, or 256 bits.

Object Creation: The roBlockCipher object is created with an associative array representing a set of parameters.

CreateObject("roBlockCipher", parameters As roAssociativeArray)

The associative array should contain the following parameters:

• mode: "aes-128-cbc", "aes-192-cbc", or "aes-256-cbc"
• padding: "zero" or "pkcs7". The object defaults to zero padding if this parameter is omitted.

Padding is required for inputs that are not an exact multiple of the cipher block size. Specifying "zero" will add padding
only when needed, while specifying "pkcs7" always adds padding, even if the data is already a multiple of the block size
(in this case, an entire block will be added). PKCS#7 padding is automatically removed upon decryption, and zero
padding will be retained since there are no means to unambiguously distinguish pad values from data.

Interfaces: ifBlockCipher

The ifBlockCipher interface provides the following:

• SetIV(iv As Object) As Void: Sets the Initialization Vector (IV) for CBC (Cipher-Block-Chaining) modes. If
the supplied IV is shorter than required, then it will be zero padded (passing an empty string will set the vector to all

131

zeroes). The IV will typically contain arbitrary characters and be in the form of an roByteArray, though it can also be
a string.

• Encrypt(key As Object, plaintext As Object) As roByteArray: Uses the specified key to encrypt
the plaintext parameter, which can be passed as either a string or an roByteArray.

• Decrypt(key As Object, cipher_text As Object) As roByteArray: Uses the specified key to
decrypt cipher text, which should be passed as an roByteArray. Because the cipher text is encrypted, it can contain
any character.

Example:

' This is Case#4 from RFC3602

key = CreateObject("roByteArray")

iv = CreateObject("roByteArray")

plain = CreateObject("roByteArray")

key.FromHexString("56e47a38c5598974bc46903dba290349")

iv.FromHexString("8ce82eefbea0da3c44699ed7db51b7d9")

plain.FromHexString("a0a1a2a3a4a5a6a7a8a9aaabacadaeafb0b1b2b3b4b5b6b7b8b9babbbcbdbebfc0c1

c2c3c4c5c6c7c8c9cacbcccdcecfd0d1d2d3d4d5d6d7d8d9dadbdcdddedf")

c = CreateObject("roBlockCipher", { mode: "aes-128-cbc" })

c.SetIV(iv)

crypt = c.Encrypt(key, plain)

result = crypt.ToHexString()

expected =

UCase("c30e32ffedc0774e6aff6af0869f71aa0f3af07a9a31a9c684db207eb0ef8e4e35907aa632c3ffdf86

8bb7b29d3d46ad83ce9f9a102ee99d49a53e87f4c3da55")

' Decrypt example to recover the encrypted data

c.SetIV(iv)

roundtrip = c.Decrypt(key, crypt)

132

' Second example selecting PKCS#7 padding

c = CreateObject("roBlockCipher", { mode: "aes-128-cbc", padding: "pkcs7" })

133

roBrightPackage
An roBrightPackage object represents a .zip file. The .zip file can include arbitrary content or can be installed on a storage
device to provide content and script updates (for example, to distribute updates via USB thumb drives).

Object Creation: The roBrightPackage object is created with a filename parameter that specifies the name of the .zip file.

CreateObject("roBrightPackage", filename As String)

Interfaces: ifBrightPackage

The ifBrightPackage interface provides the following:

• Unpack(path As String) As Void: Extracts the zip file to the specified destination path. Any preexisting files
in the target directory will be deleted as part of this operation. Providing a destination path of "SD:/" will wipe all
preexisting files from the card and extract the .zip contents to the root folder.

• SetPassword(password As String) As Void: Provides the password specified when the .zip file was
created. roBrightPackage supports AES 128 and 256 bit encryption, as generated by WinZip.

• GetFailureReason() As String

• UnpackFile(a As String, b As String) As Boolean
Note: ifBrightPackage is a legacy interface. We recommend you use roAssetPool instead to achieve better
functionality.

Example:

package = CreateObject("roBrightPackage", "newfiles.zip")

package.SetPassword("test")

package.Unpack("SD:/")

134

Using roBrightPackage to distribute new content
BrightSign checks storage devices for autorun scripts in the following order:

1. External USB devices 1 through 9
2. SD
3. µSD

In addition to looking for autorun.brs scripts, BrightSign players look for autorun.zip files that contain the script name
autozip.brs. If autozip.brs is encrypted, then the player uses the password stored in the registry, in the section "security"
under the name "autozipkey," to decrypt the file. If an autorun.zip file with an autozip.brs file is found, and autozip.bas is
decrypted, then the player will execute the autozip.brs file.

The autozip.brs file cannot reference any external files, as it is the only file to be automatically uncompressed by a
BrightSign player prior to execution. The autozip.brs script unpacks the contents of the autorun.zip file to an installed
storage device and reboots to complete the update.

Example:

' Content update application

r=CreateObject("roRectangle", 20, 668, 1240, 80)

t=CreateObject("roTextWidget",r,1,2,1)

r=CreateObject("roRectangle", 20, 20, 1200, 40)

t.SetSafeTextRegion(r)

t.SetForegroundColor(&hff303030)

t.SetBackgroundColor(&hffffffff)

t.PushString("Updating content from USB drive, please wait...")

135

package = CreateObject("roBrightPackage", "autorun.zip")

package.SetPassword("test")

package.Unpack("SD:/")

package = 0

t.Clear()

t.PushString("Update complete - remove USB drive to restart.")

while true

 sleep(1000)

 usb_key = CreateObject("roReadFile", "USB1:/autorun.zip")

 if type(usb_key) <> "roReadFile" then

 a=RebootSystem()

 endif

 usb_key = 0

end while

136

roDiskErrorEvent
This object is returned while waiting on a message port that is connected to an roDiskMonitor object.

Interfaces: ifUserData, ifDiskErrorEvent

The ifUserData interface provides the following:

• SetUserData(user_data As Object): Sets the user data that will be returned when events are raised.
• GetUserData() As Object: Returns the user data that has previously been set via SetUserData(). It will

return Invalid if no data has been set.

The ifDiskErrorEvent interface provides the following:
• GetDiskError() As Object: Returns an roAssociativeArray that contains the following:

Key Type Description
source roString The error type
time roDateTime The time at which the error occurred (with millisecond accuracy)
device roString The internal name for the device generating the error
error roString A description of the error (e.g."Timeout")
param roString The error parameter (use depends on type of error; e.g. the sector number)

Example:

aa = msgp.GetDiskError()

report = "Time: " + aa["Time"] + "Error: " + aa["source"] + " " + aa["error"] + " " +

aa["device"] + " " + aa["param"]

Note: This example uses an implicit conversion of roDateTime. You could also use roDateTime.GetString().

137

roDiskMonitor
This object provides access to low-level information about disk errors. It provides an event-based interface that
delivers roDiskErrorEvent objects via roMessageport. Error messages are held for five seconds before delivery to
minimize the chance of spurious error reports. Errors are not reported if the disk is removed during this five second
interval because disk-removal detection takes several seconds. This allows for long-term monitoring of occasional media
errors.

This object uses the ifSetMessagePort interface to select the event destination.

Object Creation: The roDiskMonitor object is created with no parameters.

CreateObject("roDiskMonitor")

Interfaces: ifSetMessagePort, ifUserData

The ifSetMessagePort interface provides the following:

• SetPort(a As Object)

The ifUserData interface provides the following:

• SetUserData(user_data As Object): Sets the user data that will be returned when events are raised.
• GetUserData() As Object: Returns the user data that has previously been set via SetUserData(). It will

return Invalid if no data has been set.

Example:

diskmon=CreateObject("roDiskMonitor")

138

msgp=CreateObject("roMessagePort")

diskmon.Setport(msgp)

139

roHashGenerator
This object provides an API for generating a variety of message digests.

Object Creation: The hash algorithm is specified when creating the roHashGenerator object.

CreateObject("roHashGenerator", algorithm As String)

The algorithm parameter accepts the following strings:

• SHA256

• SHA384

• SHA512

• SHA1

• MD5

• CRC32

Note: CRC32 is only available on firmware versions 4.4.x or later.

Interfaces: ifHashGenerator

The ifHashGenerator interface provides the following:

• Hash(obj As Object) As Object: Hashes the payload, which can be supplied in the form of a string (or any
object implementing ifString) or an roByteArray. The hash is returned as an roByteArray.

• SetHmacKey(a As Dynamic) As Boolean:
• SetObfuscatedHmacKey(a As String) As Boolean:
• GetFailureReason() As String:

140

roPassKey
This object provides a means for generating keys (hashes) from a password and salt.

Object Creation: The object is passed an associative array that specifies the generation methods and cipher.

CreateObject("roPassKey", parameters As roAssociativeArray)

The associative array should contain the following parameters:

• method: The key derivation method. Currently, only "pbkdf2" can be specified.
• kefn: The pseudorandom function (PRF). Currently, only "hmac-sha256" can be specified.
• keylen: The key length
• iterations: The number of iterations

Interfaces: ifPassKey

The ifPassKey interface provides the following:

• GenerateKey(password As Object, salt As Object) As roByteArray: Generates a key using the
supplied password and salt. The parameters may be passed as either strings or roByteArray instances. The
generated roByteArray instance may contain all possible byte values, including NUL.

• GenerateSalt(length As Integer) As roByteArray: Generates a salt of the specified length. This salt
can be used when calling the GenerateKey() method. The generated roByteArray instance may contain all
possible byte values, including NUL.

Example:

' Create input test data

salt = CreateObject("roByteArray")

141

pass = CreateObject("roByteArray")

pass.FromAsciiString("password")

salt.FromAsciiString("salt")

' Create the key generator

pk = CreateObject("roPassKey", { method: "pbkdf2", keyfn: "hmac-sha256", keylen: 32,

iterations: 4096 })

' key with be a roByteArray

key = pk.GenerateKey(pass, salt)

142

roRegistry
The registry is an area of memory where a small number of persistent settings can be stored. Access to the registry is
available through the roRegistry object.

This object is created with no parameters:

CreateObject("roRegistry")

Interfaces: ifRegistry

The ifRegistry interface provides the following:

• GetSectionList() As roList: Returns a list with one entry for each registry section.
• Delete(section As String) As Boolean: Deletes the specified section and returns an indication of

success.
• Flush() As Boolean: Flushes the registry out to persistent storage.

143

roRegistrySection
This object represents a section of the registry, enabling the organization of settings within the registry. It allows the
section to be read or written.

This object must be supplied with a "section" name upon creation.

CreateObject("roRegistrySection", section As String)

Interfaces: ifRegistrySection

The ifRegistrySection interface provides the following:

• Read(key As String) As String: Reads and returns the value of the specified key. Performing Read() on
an entry that does not exist, or on a key within a section that does not exist, will return an empty string ("").

• Write(key As String, value As String) As Boolean: Replaces the value of the specified key.
• Delete(key As String) As Boolean: Deletes the specified key.
• Exists(key As String) As Boolean: Returns True if the specified key exists.
• Flush() As Boolean: Flushes the contents of the registry out to persistent storage.
• GetKeyList() As roList: Returns a list containing one entry per registry key in this section.

Example:

registrySection = CreateObject("roRegistrySection", "widget-usage")

' An empty entry will read as an empty string and therefore be converted to zero.

hits = val(registrySection.Read("big-red-button-hits"))

hits = hits + 1

registrySection.Write("big-red-button-hits", strI(hits))

144

Writes do not always take effect immediately to prevent the system from exceeding the maximum number of writes on the
onboard persistent storage. At most, 60 seconds after a write to the registry, the newly written data will be automatically
written out to persistent storage. If, for some reason, the change must be written immediately, then one of the flush
functions should be called. Changes are automatically written prior to exiting the application.

145

roSqliteDatabase
This is the main SQLite object that "owns" the database. You can create as many of these objects as you need.

Interfaces: ifSqliteDatabase, ifSetMessagePort

The ifSqliteDatabse interface provides the following:

• Open(path As String) As Boolean: Opens an existing database file. This method returns True upon
success.

• Create(path As String) As Boolean: Creates a new, empty database file. This method returns True upon
success.

• Close(): Closes an open database.
• CreateStatement(sql_text As String) As Object: Creates a new roSqlLiteStatement object using the

specified SQL string.
• RunBackground(sql_text As String, associative_array As Object) As Integer: Runs the

specified SQL statement in the background and binds variables using the passed roAssociativeArray.
• SetMemoryLimit(limit As Integer): Sets the "soft" memory limit under which SQLite will attempt to remain

(see the SQLite documentation for details).
Note: The SetMemoryLimit()method set global parameters. It must, therefore, be called before any other calls are
made on the database object.
• SetTempDirectory(unix_path As String): Sets the temporary directory (specified as a Unix-style path)

that SQLite should use. This method was deprecated in firmware versions 4.8.x and removed from BrightScript in
versions 5.0.x.

The ifSetMessagePort interface provides the following:

• SetPort(a As Object)

146

Example: Creating a Database

db = CreateObject("roSqliteDatabase")

print db

openResult = db.Create("SD:/test.db")

if openResult

 print "Created OK"

else

 print "Creation FAILED"

 end

endif

Example: Creating a Table in a Database

createStmt = db.CreateStatement("CREATE TABLE playback (md5 text PRIMARY KEY, path PATH,

playback_count INT);")

print createStmt

if type(createStmt) <> "roSqliteStatement" then

 print "We didn't get a statement returned!!"

 end

endif

sqlResult = createStmt.Run()

147

print sqlResult

if sqlResult = SQLITE_COMPLETE

 print "Table Created OK"

else

 print "Table Creation FAILED"

endif

createStmt.Finalise()

148

roSqliteEvent
This event object is returned when a RunBackground() operation is called by the associated roSqliteDatabase object.

Interfaces: ifSqliteEvent

The ifSqliteEvent interface provides the following:

• GetTransactionId() As Integer: Returns an integer that matches the result of the originating
RunBackground() operation.

• GetSqlResult() As Integer: Returns the result code returned by the roSqlLiteStatement.Run() method. The
possible return values are identical to the Run() method:

o 100: Statement complete
o 101: Busy
o 102: Rows available

Note: This method can be used as the asynchronous alternative to the Run() method.

149

roSqliteStatement
This object is created by calling the CreateStatement() method on an roSqliteDatabase object.

Interfaces: ifSqliteStatement

The ifSqliteStatement interface provides the following:

Note: All bind methods return True upon success.
• BindByName(associative_array As Object) As Boolean: Binds the SQL variable(s) using the names

contained in the SQL statement.
• BindByOffset(associative_array/enumerable As Object) As Boolean: Binds the SQL variable(s)

using the index contained in the SQL statement. If passed an associative array, this method will convert the keys of
the associative array into numeric offsets when binding. If passed an enumerable object (e.g. roArray), it will bind
the values of the enumerable in the order that they are stored.

• BindText(variable/index As Object, value As String) As Boolean: Binds the SQL variable
indicated by the name or index parameter to the passed string value.

• BindInteger(variable/index As Object, value As Integer) As Boolean: Binds the SQL variable
indicated by the name or index parameter to the passed integer value.

• Run() As Integer: Runs the SQL statement immediately and waits for the integer result. The following are
possible integer result codes:

o 100: Statement complete
o 101: Busy
o 102: Rows available

• RunBackground() As Integer: Runs the SQL statement in the background. You can use
roSqliteDatabase.SetPort() to set a message port that will receive an roSqliteEvent message at a later point. The
RunBackground() call will result in an integer transaction ID, which will appear in the roSqliteEvent message that
matches the transaction.

150

• GetData() As Object: Returns an associative array of name/value pairs that are available after a SELECT (or
similar) operation.

• Finalise(): Finalizes the statement. This method should be applied to statements before the parent database is
closed. The object should not be used after this method is called. Also note that objects are automatically finalized
when they are deleted.

Example: Inserting into a Table Using BindByName()

insertStmt = db.CreateStatement("INSERT INTO playback (md5,path,playback_count)

VALUES(:md5_param,:path_param,:pc_param);")

print insertStmt

if type(insertStmt) <> "roSqliteStatement" then

 print "We didn't get a statement returned!!"

 end

endif

params = { md5_param: "ABDEF12346", path_param: "/foo/bar/bing/bong", pc_param: 11 }

bindResult = insertStmt.BindByName(params)

if bindResult

 print "BindByName OK"

else

 print "BindByName FAILED"

 end

endif

151

sqlResult = insertStmt.Run()

print sqlResult

if sqlResult = SQLITE_COMPLETE

 print "Table Insertion OK"

else

 print "Table Insertion FAILED"

endif

insertStmt.Finalise()

Example: Inserting into a Table Using BindByOffset()

insertStmt = db.CreateStatement("INSERT INTO playback (md5,path,playback_count)

VALUES(?,?,?);")

print insertStmt

if type(insertStmt) <> "roSqliteStatement" then

 print "We didn't get a statement returned!!"

 end

endif

params = CreateObject("roArray", 3, false)

params[0] = "ABDEF12345"

152

params[1] = "/foo/bar/bing/bong"

params[2] = 10

bindResult = insertStmt.BindByOffset(params)

if bindResult

 print "BindByOffset OK"

else

 print "BindByOffset FAILED"

 end

endif

sqlResult = insertStmt.Run()

print sqlResult

if sqlResult = SQLITE_COMPLETE

 print "Table Insertion OK"

else

 print "Table Insertion FAILED"

endif

insertStmt.Finalise()

Example: Inserting into a Table in the Background

' This examples assume you have set a message port on your roSqliteDatabase instance

153

'

insertStmt = db.CreateStatement("INSERT INTO playback (md5,path,playback_count)

VALUES(:md5_param,:path_param,:pc_param);")

print insertStmt

if type(insertStmt) <> "roSqliteStatement" then

 print "We didn't get a statement returned!!"

 end

endif

params = { md5_param: "ABDEF12348", path_param: "/foo/bar/bing/bong", pc_param: 13 }

bindResult = insertStmt.BindByName(params)

if bindResult

 print "BindByName OK"

else

 print "BindByName FAILED"

 end

endif

expectedId = insertStmt.RunBackground()

e = mp.WaitMessage(10000)

if e <> invalid then

154

 if type(e) = "roSqliteEvent" then

 transId = e.GetTransactionId()

 sqlResult = e.GetSqlResult()

 print transId

 print sqlResult

 if transId <> expectedId then

 print "Incorrect transaction Id"

 end

 endif

 if sqlResult <> SQLITE_COMPLETE then

 print "SQL Insertion Failed"

 end

 endif

 else

 print "RunBackground() - Wrong event - FAILED"

 end

 endif

else

 print "RunBackground() - No Response - FAILED"

 end

endif

' You don't need to call Finalise() since that'll be done by the background processor.

Example: Querying from a Table

selectStmt = db.CreateStatement("SELECT * FROM playback;")

155

if type(selectStmt) <> "roSqliteStatement" then

 print "We didn't get a statement returned!!"

 end

endif

sqlResult = selectStmt.Run()

print sqlResult

while sqlResult = SQLITE_ROWS

 resultsData = selectStmt.GetData()

 print resultsData;

 sqlResult = selectStmt.Run()

end while

selectStmt.Finalise()

156

roStorageAttached, roStorageDetached

Interfaces: ifString, ifStringOps

The ifString interface provides the following:

• GetString() As String

• SetString(a As String)

The ifStringOps interface provides the following:

Note: The function indexes of ifStringOps methods start at zero, while the function indexes of global methods start at
one.
• SetString(str As String, str_len As Integer): Sets the string using the specified string and string-

length values.
• AppendString(str As String, str_len As Integer): Appends the string using the specified string and

string-length values. This method modifies itself—this can cause unexpected results when you pass an intrinsic
string type, rather than a string object.
Example:

x="string"

x.ifstringops.appendstring("ddd",3)

print x 'will print 'string'

y=box("string")

y.ifstringops.appendstring("ddd",3)

print y 'will print 'stringddd'

• Len() As Integer

157

• GetEntityEncode() As String

• Tokenize(delim As String) As Object

• Trim() As String

• ToInt() As Integer

• ToFloat() As Float

• Left(chars As Integer) As String

• Right(chars As Integer) As String

• Mid(start_index As Integer) As String

• Mid(start_index As Integer, chars As Integer) As String

• Instr(substring As String) As Integer

• Instr(start_index As Integer, substring As String) As Integer

158

roStorageHotplug
This object provides roStorageAttached messages when storage devices appear and roStorageDetached messages
when storage devices disappear. Currently, only external USB devices are supported, and there is no way to poll for
media.

Object Creation: The roStorageHotplug object is created with no parameters.

CreateObject("roStorageHotplug")

Interfaces: ifSetMessagePort

The ifSetMessagePort interface provides the following:

• SetPort(a As Object)

In order to avoid race conditions at startup, you should check for any storage devices that might have existed prior to the
message port being set. We recommend doing this after the object is created and the message port is set, but before
instructing the script to wait for any events.

Example

Sub Main()

 mp = CreateObject("roMessagePort")

 sh = CreateObject("roStorageHotplug")

 gpio = CreateObject("roControlPort", "brightsign")

 sh.SetPort(mp)

 gpio.SetPort(mp)

159

 finished = false

 while not finished

 ev = mp.WaitMessage(0)

 if type(ev) = "roControlDown"

 finished = true

 else if type(ev) = "roStorageAttached"

 print "ATTACHED "; ev.GetString()

 else if type(ev) = "roStorageDetached"

 print "DETACHED "; ev.GetString()

 else

 print type(ev)

 stop

 end if

 end while

End Sub

160

roStorageInfo
This object is used to report storage device usage information.

Object Creation: The roStorageInfo object is created with a parameter that specifies the path of the storage device. The
path does not need to extend to the root of the storage device.

CreateObject("roStorageInfo", path As String)

Interfaces: ifStorageInfo

The ifStorageInfo interface provides the following:

Note: On some filesystems that have a portion of space reserved for the super-user, the following expression may not be
true: GetUsedInMegabytes + GetFreeInMegabytes == GetSizeInMegabytes

• GetFailureReason() As String: Yields additional useful information if a function return indicates an error.
• GetBytesPerBlock() As Integer: Returns the size of a native block on the filesystem used by the specified

storage device.
• GetSizeInMegabytes() As Integer: Returns the total size (in mebibytes) of the storage device.
• GetUsedInMegabytes() As Integer: Returns the amount (in mebibytes) of space currently used on the

storage device.
Note: This amount includes the size of the pool because this class does not integrate pools into its calculations.

• GetFreeInMegabytes() As Integer: Returns the available space (in mebibytes) on the storage device.
• GetFileSystemType() As String: Returns a string describing the type of filesystem used on the specified

storage. Potential values are fat12, fat16, fat32, ext3, ntfs, hfs, Hfsplus.
• GetStorageCardInfo() As Object: Returns an associative array containing details of the storage device

hardware (a memory card, for example). For SD cards, the returned data may include the following:

161

sd_mfr_id Int Card manufacturer ID as assigned by the SD Card Association
sd_oem_id String Two-character card OEM identifier as assigned by the SD Card Association
sd_product_name String Product name, assigned by the card manufacturer (5 bytes for SD, 6 bytes for MMC)
sd_spec_vers Int Version of SD spec to which the card conforms
sd_product_rev String Product revision assigned by the card manufacturer
sd_speed_class String Speed class (if any) declared by the card
sd_au_size Int Size of the SD AU in bytes.

Example:

si=CreateObject("roStorageInfo", "SD:/")

Print si.GetFreeInMegabytes(); "MiB free"

162

CONTENT MANAGEMENT OBJECTS

roAssetCollection
This object is used to represent a collection of assets.

Object Creation: The roAssetCollection object is created with no parameters.

CreateObject("roAssetCollection")

You can populate an asset collection with individual calls to AddAsset() or AddAssets(). You can also populate an
asset collection using the roSyncSpec.GetAssets method, as shown below:

assetCollection = CreateObject("roAssetCollection")

localCurrentSync = CreateObject("roSyncSpec")

 if localCurrentSync.ReadFromFile("local-sync.xml") then

 assetCollection = localCurrentSync.GetAssets("download")

 endif

Interfaces: ifAssetCollection, ifInternalAssetCollection

The ifAssetCollection interface provides the following: stuff

• GetFailureReason() As String

• AddAsset(asset_info As Object) As Boolean: Adds a single asset from an associative array.

163

• AddAssets(asset_info_array As Object) As Boolean: Adds multiple assets from an enumerable object
(roList or roArray) that contains compatible associative arrays.

• GetAssetList() As roList: Returns an roList instance containing associative arrays of the asset metadata.
This method is not efficient and is, therefore, recommended for debugging and diagnostic purposes only.

The associative array contains the following:

name String Mandatory The name of the asset. For a file to be realized, it must have a valid
filename (i.e. no slashes).

link String Mandatory The download location of the asset
size Integer/String Optional The size of the asset. Use a string if you want to specify a number

that is too large to fit into an integer (this allows file sizes larger than
2 GB).

hash String Optional A string in the form of "hash_algorithm:hash". See the next
table for details.

change_hint String Optional Any string that will change in conjunction with the file contents. This
is not necessary if the link or hash is supplied and always
changes.

auth_inherit Boolean Optional Indication of whether or not this asset uses roAssetFetcher
authentication information. The default is set to True.

auth_user Boolean Optional User to utilize for authentication when downloading only this asset.
This automatically disables "auth_inherit".

auth_password Boolean Optional Password to use when downloading only this asset. This
automatically disables "auth_inherit".

headers_inherit Boolean Optional The command to pass any header supplier to roAssetFetcher when
fetching this asset. The default is true.

164

Important: Any "optional" fields that are specified when populating the pool must also be specified when retrieving assets
from the pool (i.e. they become "mandatory" once they are used for an asset). For example, if the hash value is specified
when fetching into the pool, then it must also be specified when attempting to refer to files in the pool.

Hash algorithms:

sha1 If a sha1 is available, you can validate the hash as the file is downloaded. If such a hash is available, it should
be used. The link and change_hint properties have no effect on the pool file name, so the file is shared
even if it is downloaded from different locations.

besha1 This algorithm hashes some of the file along with the file size in order to verify the contents. It also moves the
link and change_hint properties into the pool filename.

(none) Without any hash, the file cannot be verified as it is downloaded, and the system will rely on the link and
change_hint properties to give the pool a unique filename.

165

roAssetFetcher
This object contains functions for downloading files to the pool.

Object Creation: The roAssetFetcher object must be passed an roAssetPool object upon creation.

CreateObject("roAssetFetcher", pool As roAssetPool)

Example:

Pool = CreateObject("roAssetPool", "pool")

Fetcher = CreateObject("roAssetFetcher", Pool)

Interfaces: ifAssetFetcher, ifMessagePort, ifUserData

The ifAssetFetcher interface provides the following:

• GetFailureReason() As String: Returns an error string if an roAssetFetcher method has failed (this is
usually indicated by returning False). The error string may help diagnose the failure.

• SetUserAndPassword(user As String, password As String) As Boolean: Sets the default user and
password strings to be used for all download requests that are not otherwise marked using the following attributes:
<auth inherit=”no”> or <auth user=”user” password =”password”>.

• EnableUnsafeAuthentication(enable As Boolean) As Boolean: Supports basic HTTP authentication if
True. HTTP authentication uses an insecure protocol, which might allow others to easily determine the password.
The roAssetFetcher object will still prefer the stronger digest HTTP if it is supported by the server. If this method is
False (which is the default setting), it will refuse to provide passwords via basic HTTP authentication, and any
requests requiring this authentication will fail.

166

• EnableUnsafeProxyAuthentication(enable As Boolean) As Boolean: Supports basic HTTP
authentication against proxies if True (which, unlike EnableUnsafeAuthentication(), is the default setting).
HTTP authentication uses an insecure protocol, which might allow others to easily determine the password. If this
method is False, it will refuse to provide passwords via basic HTTP authentication, and any requests requiring this
authentication type will fail.

• AsyncDownload(assets As roAssetCollection) As Boolean: Begins populating the asset pool using
the files listed in the passed roAssetCollection instance. Files that are not already in the pool will be downloaded
automatically. Events are raised during the download process to indicate whether individual file downloads have
succeeded or failed; finally, a single event will be raised indicating whether the entire asset collection has been
downloaded successfully or not. See the roAssetFetcherEvent and roAssetFetcherProgressEvent entries for more
details.

• AsyncSuggestCache(a As Object) As Boolean

• AsyncCancel() As Boolean: Cancels any pending “Async” requests. Note that, prior to and during this method
call, events associated with an asynchronous action may be queued. No more events will be queued once this call
returns. We recommend collecting any pending events prior to calling any further “Async” methods on the same
object to avoid confusion.

• EnablePeerVerification(verification As Boolean)

• EnableHostVerification(verification As Boolean)

• SetCertificatesFile(filename As String)

• AddHeader(name As String, value As String): Specifies a header that will be passed to HTTP requests
made by the roAssetFetcher object. A particular download will not include the header if it has the <headers
inherit=”no”> attribute in the sync spec.

• SetHeaders(headers As roAssociativeArray) As Boolean: Specifies all headers that will be passed to
HTTP requests made by the roAssetFetcher object. This method removes any previously set headers. A particular
download will not include the headers if it has the <headers inherit=”no”> attribute in the sync spec.

• SetMinimumTransferRate(bytes_per_second As Integer, period_in_seconds As Integer) As

Boolean: Sets the minimum transfer rate for each file download. A transfer will be terminated if the rate drops

167

below bytes_per_second when averaged over period_in_seconds. Note that if the transfer is over the Internet, you
may not want to set period_in_seconds to a small number in case network problems cause temporary drops in
performance. For large file transfers and a small bytes_per_second limit, averaging fifteen minutes or more may be
appropriate.

• SetProxy(a As String) As Boolean

• SetFileProgressIntervalSeconds(interval As Integer) As Boolean: Specifies the interval (in
seconds) between progress events when an individual file is being downloaded. Setting the interval to -1 disables
all progress events. Setting the interval to 0 specifies that events should be generated as often as possible, though
this will slow down the transfer process. If the interval is set to 0 or any positive integer, events will always be
generated at the start and end of the file download irrespective of elapsed time. The default interval is 300 seconds.

• SetFileRetryCount(count As Integer) As Boolean: Specifies the maximum number of times each file
download will be retried before moving on to the next file download. The default retry count is five.

• SetRelativeLinkPrefix(prefix As String) As Boolean: Specifies a prefix that will be appended to the
front of relative links in the sync spec. Normally, this method is used to make file:/// URIs drive agnostic, but it can
also be used to reduce the size of the sync spec if all files are stored in the same place. Non-relative links are not
affected by this method.

• BindToInterface(interface As Integer) As Boolean: Ensures that the HTTP request goes out over
the specified network interface (0 for Ethernet or 1 for WiFi). The default behavior (which can be specified by
passing -1) is to send requests using the most appropriate network interface, which may depend on the routing
metric configured via the roNetworkConfiguration object. If both interfaces are on the same layer 2 network, this
method may not work as expected due to the Linux weak-host model.

The ifMessagePort interface provides the following:
• SetPort(a As Object)

The ifUserData interface provides the following:
• SetUserData(user_data As Object): Sets the user data that will be returned when events are raised.

168

• GetUserData() As Object: Returns the user data that has previously been set via SetUserData(). It will
return Invalid if no data has been set.

169

roAssetFetcherEvent
This event is generated by an roAssetFetcher object when a file transfer succeeds or fails, or when population of the
asset pool as a whole succeeds or fails.

Interfaces: ifAssetFetcherEvent, ifUserData

The ifAssetFetcherEvent interface provides the following:

• GetEvent() As Integer: Returns an integer indicating the result of an roAssetFetcher download attempt:
o 1: POOL_EVENT_FILE_DOWNLOADED
o -1: POOL_EVENT_FILE_FAILED
o 2: POOL_EVENT_ALL_DOWNLOADED
o -2: POOL_EVENT_ALL_FAILED

• GetName() As String

• GetResponseCode() As Integer: Returns the protocol response code associated with an event. The following
codes indicate success:

o 200: Successful HTTP transfer
o 226: Successful FTP transfer
o 0: Successful local file transfer

For unexpected errors, the return value is negative. There are many possible negative errors from the CURL library,
but it is often best to look at the text version by calling GetFailureReason().

Here are some potential errors. Not all of them can be generated by a BrightSign player:
Status Name Description

-1 CURLE_UNSUPPORTED_PROTOCOL
-2 CURLE_FAILED_INIT
-3 CURLE_URL_MALFORMAT
-5 CURLE_COULDNT_RESOLVE_PROXY

170

-6 CURLE_COULDNT_RESOLVE_HOST
-7 CURLE_COULDNT_CONNECT
-8 CURLE_FTP_WEIRD_SERVER_REPLY

-9 CURLE_REMOTE_ACCESS_DENIED A service was denied by the server due to lack of access.
When login fails, this is not returned.

-11 CURLE_FTP_WEIRD_PASS_REPLY
-13 CURLE_FTP_WEIRD_PASV_REPLY
-14 CURLE_FTP_WEIRD_227_FORMAT
-15 CURLE_FTP_CANT_GET_HOST
-17 CURLE_FTP_COULDNT_SET_TYPE
-18 CURLE_PARTIAL_FILE
-19 CURLE_FTP_COULDNT_RETR_FILE
-21 CURLE_QUOTE_ERROR Failed quote command
-22 CURLE_HTTP_RETURNED_ERROR
-23 CURLE_WRITE_ERROR
-25 CURLE_UPLOAD_FAILED Failed upload command.
-26 CURLE_READ_ERROR Could not open/read from file.
-27 CURLE_OUT_OF_MEMORY
-28 CURLE_OPERATION_TIMEDOUT The timeout time was reached.
-30 CURLE_FTP_PORT_FAILED FTP PORT operation failed.
-31 CURLE_FTP_COULDNT_USE_REST REST command failed.
-33 CURLE_RANGE_ERROR RANGE command did not work.
-34 CURLE_HTTP_POST_ERROR
-35 CURLE_SSL_CONNECT_ERROR Wrong when connecting with SSL.
-36 CURLE_BAD_DOWNLOAD_RESUME Could not resume download.
-37 CURLE_FILE_COULDNT_READ_FILE
-38 CURLE_LDAP_CANNOT_BIND
-39 CURLE_LDAP_SEARCH_FAILED
-41 CURLE_FUNCTION_NOT_FOUND
-42 CURLE_ABORTED_BY_CALLBACK
-43 CURLE_BAD_FUNCTION_ARGUMENT
-45 CURLE_INTERFACE_FAILED CURLOPT_INTERFACE failed.

171

-47 CURLE_TOO_MANY_REDIRECTS Catch endless re-direct loops.
-48 CURLE_UNKNOWN_TELNET_OPTION User specified an unknown option.
-49 CURLE_TELNET_OPTION_SYNTAX Malformed telnet option.
-51 CURLE_PEER_FAILED_VERIFICATION Peer's certificate or fingerprint wasn't verified correctly.
-52 CURLE_GOT_NOTHING When this is a specific error.
-53 CURLE_SSL_ENGINE_NOTFOUND SSL crypto engine not found.
-54 CURLE_SSL_ENGINE_SETFAILED Cannot set SSL crypto engine as default.
-55 CURLE_SEND_ERROR, Failed sending network data.
-56 CURLE_RECV_ERROR Failure in receiving network data.
-58 CURLE_SSL_CERTPROBLEM Problem with the local certificate.
-59 CURLE_SSL_CIPHER Could not use specified cipher.
-60 CURLE_SSL_CACERT Problem with the CA cert (path?)
-61 CURLE_BAD_CONTENT_ENCODING Unrecognized transfer encoding.
-62 CURLE_LDAP_INVALID_URL Invalid LDAP URL.
-63 CURLE_FILESIZE_EXCEEDED, Maximum file size exceeded.
-64 CURLE_USE_SSL_FAILED, Requested FTP SSL level failed.
-65 CURLE_SEND_FAIL_REWIND, Sending the data requires a rewind that failed.
-66 CURLE_SSL_ENGINE_INITFAILED Failed to initialize ENGINE.

-67 CURLE_LOGIN_DENIED User, password, or similar field was not accepted and login
failed .

-68 CURLE_TFTP_NOTFOUND File not found on server.
-69 CURLE_TFTP_PERM Permission problem on server.
-70 CURLE_REMOTE_DISK_FULL Out of disk space on server.
-71 CURLE_TFTP_ILLEGAL Illegal TFTP operation.
-72 CURLE_TFTP_UNKNOWNID Unknown transfer ID.
-73 CURLE_REMOTE_FILE_EXISTS File already exists.
-74 CURLE_TFTP_NOSUCHUSER No such user.
-75 CURLE_CONV_FAILED Conversion failed.

-76 CURLE_CONV_REQD

Caller must register conversion callbacks using the following
URL_easy_setopt options:
CURLOPT_CONV_FROM_NETWORK_FUNCTION
CURLOPT_CONV_TO_NETWORK_FUNCTION

172

CURLOPT_CONV_FROM_UTF8_FUNCTION
-77 CURLE_SSL_CACERT_BADFILE Could not load CACERT file, missing or wrong format.
-78 CURLE_REMOTE_FILE_NOT_FOUND Remote file not found.

-79 CURLE_SSH Error from the SSH layer (this is somewhat generic, so the
error message will be important when this occurs).

-80 CURLE_SSL_SHUTDOWN_FAILED Failed to shut down the SSL connection.

The following error codes are generated by the system software and are outside the range of CURL events:
Status Name Description

-1002 ENOENT The specified file does not exist or cannot be created.

-10001 Cancelled The operation has been cancelled.

-10002 Exception The operation caused a local exception. Call
GetFailureReason() for more details.

-10003 ERROR_EXCEPTION An unexpected exception occurred.

-10004 ERROR_DISK_ERROR A disk error occurred (usually as a result of the disk being full).

-10005 ERROR_POOL_UNSATISFIED The expected files are not present in the pool.

-10006 ERROR_DOWNLOADING_ELSEWHERE The file is being downloaded by another roAssetFetcher
instance.

-10007 ERROR_HASH_MISMATCH A downloaded file did not match its checksum or file size.

• GetFailureReason() As String: Returns additional failure information associated with the event (if any).
• GetFileIndex() As Integer: Retrieves the zero-based index from the sync spec of the file associated with

the event.

The ifUserData interface provides the following:

• SetUserData(user_data As Object): Sets the user data that will be returned when events are raised.

173

• GetUserData() As Object: Returns the user data that has previously been set via SetUserData(). It will
return Invalid if no data has been set.

174

roAssetFetcherProgressEvent
This event is generated by the roAssetFetcher object at regular intervals during file downloads. Use
the roAssetFetcher.SetFileProgressIntervalSeconds() method to customize how often progress events are generated.

Interfaces: ifAssetFetcherProgressEvent, ifUserData

The ifAssetFetcherProgressEvent interface provides the following:

• GetFileName() As String: Returns the name of the file associated with the event. The file name is retrieved
from the sync spec associated with the roAssetFetcher that generated the event.

• GetFileIndex() As Integer: Returns the zero-based index from the sync spec of the file associated with the
event.

• GetFileCount() As Integer: Returns the total number of files within the sync spec.
• GetCurrentFileTransferredMegabytes() As Integer: Returns the number of transferred megabytes

belonging to the file associated with the event.
• GetCurrentFileSizeMegabytes() As Integer: Returns the size of the file associated with the event.
• GetCurrentFilePercentage() As Float: Returns a floating-point number representing the download

percentage of the file associated with the event.

The ifUserData interface provides the following:

• SetUserData(user_data As Object): Sets the user data that will be returned when events are raised.
• GetUserData() As Object: Returns the user data that has previously been set via SetUserData(). It will

return Invalid if no data has been set.

175

roAssetPool
An roAssetPool instance represents a pool of files for synchronization. You can instruct this object to populate the pool
based on a sync spec and then realize it in a specified directory when required.

Object Creation: The roAssetPool object is created with a single parameter representing the rooted path of the pool.

CreateObject("roAssetPool", pool_path As String)

Example:

pool = CreateObject ("roAssetPool", "SD:/pool")

Interfaces: ifAssetPool

The ifAssetPool interface provides the following:

• GetFailureReason() As String

• ProtectAssets(name As String, collection As Object) As Boolean: Requests that the files
specified in the "download" section of a sync spec receive a certain amount of protection. Specified files will not be
deleted when the system software needs to reduce the size of the pool to make space.

• UnprotectAssets(name As String) As Boolean: Removes the protected status placed on the specified
files by the ProtectAssets() method. Asset collections are reference counted at the system-software level. As a
result, when calling UnprotectAssets(), you must pass the same object that you previously passed to
ProtectAssets().

• UnprotectAllAssets() As Boolean

176

• ReserveMegabytes(size As Integer) As Boolean: Reserves the specified amount of storage space. This
method is dynamic: The system software attempts to keep the space free even when parallel processes are filling
up the storage.

• SetMaximumPoolSizeMegabytes(maximum_size As Integer) As Boolean: Specifies the maximum size
of an roAssetPool instance in megabytes. This method is more resource-intensive than ReserveMegabytes(),
but it is useful when creating multiple pools on a storage device.

• GetPoolSizeInMegabytes() As Integer

• Validate(sync_spec As Object, options As roAssociativeArray) As Boolean: Checks the
SHA1 hash value of every file in the sync spec that is currently present in the pool. This method returns True if all
checks pass and False if one or more checks fail. Calling GetFailureReason() will return information about the
corrupt file(s). Note that a True return may not mean that all files in the sync spec are currently present in the pool.
The second parameter represents a table of validation options: The key specifies the option and the value specifies
whether the option is enabled or not (as a Boolean value). Currently, the only option is "DeleteCorrupt", which
determines whether the method should automatically delete corrupt files or not.

• QueryFiles(a As Object) As Object

• AssetsReady(collection As Object) As Boolean

177

roAssetPoolFiles
This object works similarly to the roSyncPoolFiles object.

Object Creation: The roAssetPoolFiles object is created with two parameters.

CreateObject("roAssetPoolFiles", pool As Object, assets As Object)

The "assets" can be either an roAssetCollection or roSyncSpec object. If more than one object requires use of the
roAssetCollection object, it will be more efficient to convert roSyncSpec to roAssetCollection by calling GetAssets()
once and then passing that collection to all objects requiring it.

Interfaces: ifAssetPoolFiles

The ifAssetPoolFiles interface provides the following:

• GetFailureReason() As String: Returns explanatory text if GetPoolFilePath() returns an empty string
or GetPoolFileInfo() returns Invalid.

• GetPoolFilePath(asset_name As String) As String: Looks up the specified file name in the asset
collection and uses the information to determine the actual name of the file in the pool. This method returns an
empty string if the name is not found in the asset collection, or if the file is not found in the pool.

• GetPoolFileInfo(asset_name As String) As Object: Looks up the specified file name in the asset
collection and returns all available information, including the pool file path, as an associative array. This method
returns Invalid if the asset name is not found in the asset collection. If the file is not found in the pool, information
from the asset collection will be returned without the pool path. See the table below for a description of assets in
the associative array.

178

Field Value Description
name String Asset name
link String Asset URL
size String
hash String Hash in algorithm ":" hash format
change_hint String Only present if set
auth_user String Only present if set
auth_password String Only present if set
auth_inherit Boolean
headers_inherit Boolean
probe String Probe data
path String Absolute path of the file in the pool (or "invalid" if the file is not in the pool)

179

roAssetRealizer
This object contains functions for realizing files.

Object Creation: The roAssetRealizer object requires two parameters upon creation: an roAssetPool object and a
destination directory.

CreateObject("roAssetRealizer", pool As roAssetPool, destination_directory As String)

Example:

pool = CreateObject("roAssetPool", "pool")

realizer = CreateObject ("roAssetRealizer", pool, "/")

Interfaces: ifUserData, ifAssetRealizer

The IfUserData interface provides the following:

• SetUserData(user_data As Object): Sets the user data that will be returned when events are raised.
• GetUserData() As Object: Returns the user data that has previously been set via SetUserData(). It will

return Invalid if no data has been set.

The ifAssetRealizer interface provides the following:

• GetFailureReason() As String: Yields additional useful information if a function return indicates an error.
• EstimateRealizedSizeInMegabytes(spec As Object) As Integer: Returns the estimated amount of

space that would be taken up by the specified sync spec.
• Realize(spec As roSyncSpec/roAssetCollection) As Object: Places the files into the destination

directory specified in the passed roSyncSpec or roAssetCollection. If the pool does not contain the full set of

180

required files, then this method will immediately fail before any files are changed (this method will always attempt to
do as much work as possible before destructively modifying the file system). This method automatically checks the
length of the file and any hashes that match the specification. If there is a mistmatch, then the affected file is
deleted and realization fails. This method indicates success or failure by returning an roAssetRealizerEvent object.

Note: The pool and the destination must be in the same file system.
• ValidateFiles(spec As Object, options As Object) As Object: Checks the hash of every file in the

spec against the corresponding file in the destination path and returns an associative array containing each
mismatched fle name mapped to the reason. The options parameter is an roAssociativeArray, which can currently
support a single option:

o "DeleteCorrupt": Automatically deletes any files that do not match the expected hash. By default, these
hashes are not deleted.

181

roAssetRealizerEvent
This event object is returned when the roAssetRealizer.Realize() method is called. It yields information about the success
or failure of the realization process.

Interfaces: ifAssetRealizerEvent, ifUserData

The ifAssetRealizerEvent interface provides the following:

• GetEvent() As Integer: Returns an integer value indicating the type of the event:
101 EVENT_REALIZE_SUCCESS The specified sync list was successfully realized.
-102 EVENT_REALIZE_INCOMPLETE Realization could not begin because at least one of the required files is not

available in the pool.
-103 EVENT_REALIZE_FAILED_SAFE Realization has failed. Nothing has been written to the destination, so it is

likely safe to continue the realization process. More information is about
the failure is available via the GetFailureReason() and GetName()
methods.

-104 EVENT_REALIZE_FAILED_UNSAFE Realization has failed while running, and changes have been made to
destination files. It may not be safe to continue the realization process.
More information about the failure is available via the
GetFailureReason() and GetName() methods.

• GetName() As String: Retrieves the name of the affected file if the realization process fails.
• GetResponseCode() As Integer: Retrieves the roUrlTransfer response code associated with the event (if

any).
• GetFailureReason() As String: Returns additional information if the realization process fails.
• GetFileIndex() As Integer: Retrieves the zero-based index number of the the file in the sync spec.

182

The ifUserData interface provides the following:
• SetUserData(user_data As Object): Sets the user data that will be returned when events are raised.
• GetUserData() As Object: Returns the user data that has previously been set via SetUserData(). It will

return Invalid if no data has been set.

183

roSyncSpec
This object represents a parsed sync spec. It allows you to retrieve various parts of the specification with methods.

Interfaces: ifSyncSpec, ifInternalSyncSpec, ifInstanceFromStream

The ifSyncSpec interface provides the following:

• GetFailureReason() As String: Returns information if an roSyncSpec method indicates failure.
• ReadFromFile(filename As String) As Boolean: Populates the sync spec by reading the specified file.

This method returns True upon success and False upon failure.
• ReadFromString(spec As String) As Boolean: Populates the sync spec by reading the passed string.

This method returns True upon success and False upon failure.
• WriteToFile(filename As String) As Boolean: Writes out the current sync spec to the specified file.

Because the XML is regenerated, it is possible this file may not be textually identical to the specification that was
read. This method returns True upon success and False upon failure.

• WriteToString() As String: Writes out the current sync spec to a string and returns it. This method returns
an empty string if the write operation fails.

• GetMetadata(section As String) As roAssociativeArray: Returns an roAssociativeArray object
containing the information stored in the specified metadata section of the sync spec (typically "client" or "server").
This method returns 0 if the read operation fails.

• LookupMetadata(section As String, field As String) As String: Provides a shortcut for looking
up specified metadata items in the specified section without needing to create a temporary roAssociativeArray
object. This method returns an empty string if the read operation fails.

• GetFileList(section As String) As roList: Returns an roList object containing roAssociativeArray
objects for each file in the specified section of the sync spec. This method returns Invalid if the read operation fails.

184

• GetFile(section As String, index As Integer) As roAssociativeArray: Returns an
roAssociativeArray object for the file in the specified section and at the specified index. This method returns Invalid
if the read operation fails.

• GetName() As String: Returns the name supplied for the sync spec in the <sync> XML element.
• EqualTo(other As roSyncSpec) As Boolean: Compares the contents of the roSyncSpec object with

another roSyncSpec object. This method compares the parsed contents of each sync spec rather than the XML
files themselves.

• VerifySignature(signature as String, obfuscated_passphrase as String) As Boolean: De-
obfuscates the passphrase and uses it to verify the signature of the sync spec. This method returns True upon
success and False upon failure.

• FilterFiles(section As String, criteria As roAssociativeArray) As roSyncSpec: Returns a
new roSyncSpec object that is a copy of the existing object, except that the specified section is filtered using the
specified criteria. The criteria are matched against the file metadata. Multiple criteria can be specified in the passed
associative array, and all criteria must be met for a file to be returned with the new roSyncSpec.

Example: The following function will yield an roSyncSpec object with a "download" section that has been filtered so
that only files of the group "scripts" will remain.

filtered_spec = spec.FilterFiles("download", { group: "scripts" })

• FilesEqualTo(a As Object) As Boolean

• GetAssets(a As String) As Object

185

NETWORKING OBJECTS

roDatagramSender, roDatagramReceiver, roDatagramSocket, roDatagramEvent
The roDatagramSender and roDatagramReceiver objects allow for simple sending and receiving of unicast and broadcast
UDP packets. The roDatagramEvent object can be used to both send and receive UDP packets.

roDatagramSender
This object allows UDP packets to be sent to a specified destination.

Object Creation: The roDatagramSender object is created with no parameters.

CreateObject("roDatagramSender")

Interfaces: ifDatagramSender

The ifDatagramSender interface provides the following:

• SetDestination(destination_address As String, destination_port As Integer) As
Boolean: Specifies the destination IP address in dotted quad form along with the destination port. This function
returns True if successful.

• Send(packet As Object) As Integer: Sends the specified data packet as a datagram. The packet may be
a string or an roByteArray. This method returns 0 upon success and a negative error code upon failure.

This example script broadcasts a single UDP packet containing "HELLO" to anyone on the network listening on port
21075:

sender = CreateObject("roDatagramSender")

186

sender.SetDestination("255.255.255.255", 21075)

sender.Send("Hello")

roDatagramReceiver
This object sends roDatagramEvent instances to a message port when UDP packets are received on a specified port.

Object Creation: The roDatagramReceiver object is created with a single parameter. The port paremeter specifies the
port on which to receive UDP packets.

CreateObject("roDatagramReceiver ", port As Integer)

Interfaces: ifIdentity, ifSetMessagePort

The ifIdentity interface provides the following:

• GetIdentity() As Integer

The ifSetMessagePort interface provides the following:

• SetPort(a As Object)

This example script listens for UDP packets on port 21075:

receiver = CreateObject("roDatagramReceiver", 21075)

mp = CreateObject("roMessagePort")

receiver.SetPort(mp)

while true

 event = mp.WaitMessage(0)

 if type(event) = "roDatagramEvent" then

187

 print "Datagram: "; event

 endif

end while

roDatagramSocket
This object both sends and receives UDP packets. Use roDatagramSocket if you need the player to communicate using
protocols such as SSDP, which only allow a server to respond to the source of a received request.

Received packets are delivered to the message port as roDatagramEvent objects.

Interfaces: ifUserData, ifMessagePort, ifDatagramSocket, ifIdentity

The ifUserData interface provides the following:

• SetUserData(user_data As Object): Sets the user data that will be returned when events are raised.
• GetUserData() As Object: Returns the user data that has previously been set via SetUserData(). It will

return Invalid if no data has been set.

The ifMessagePort interface provides the following:

• SetPort(a As Object)

The ifDatagramSocket interface provides the following:

• GetFailureReason() As String: Returns additional information if the BindToLocalPort or Sendto
methods fail.

• BindToLocalPort(port As Integer) As Boolean: Binds the socket to the specified local port. Use this
method to receive packets sent to a specific port. Alternatively, if you want to receive replies to sent packets (and it

188

doesn’t matter which local port is used), pass a port number of 0, and the player will select an unused port. This
method returns True upon success and False upon failure

• GetLocalPort() As Integer: Returns the local port to which the socket is bound. Use this method if you
passed a port number of 0 to BindToLocalPort and need to determine which port the player has selected.

• SendTo(destination_address As String, destination_port As Integer, packet As Object)

As Integer: Sends a single UDP packet, which can be an roString or roByteArray, to the specified address and
port. This method returns 0 upon success and a negative error code upon failure.

• JoinMulticastGroup(address as String) as Boolean: Joins the multicast group for the specified
address on all interfaces that are currently up. This method returns True upon success and False upon failure. In
the event of failure, GetFailureReason() may provide additional information. To ensure that you are joined on
all network interfaces, you should register for roNetworkHotplug events and call the JoinMulticastGroup()
method in response to the arrival of new networks.

The ifIdentity interface provides the following:

• GetIdentity() As Integer

roDatagramEvent

Interfaces: ifUserData, ifSourceIdentity, ifString, ifDatagramEvent

The ifUserData interface provides the following:

• SetUserData(user_data As Object): Sets the user data that will be returned when events are raised.
• GetUserData() As Object: Returns the user data that has previously been set via SetUserData(). It will

return Invalid if no data has been set.

The ifSourceIdentity interface provides the following:

• GetSourceIdentity() As Integer

189

The ifString interface provides the following:

• GetString() As String

The ifDatagramEvent interface provides the following:

• GetByteArray() as Object: Returns the contents of the packet as an roByteArray.
• GetSourceHost() as String: Returns the source IP address of the packet in dotted form.
• GetSourcePort() as Integer: Returns the source port of the packet.

190

roHttpEvent
This event object is used to handle requests generated by the roHttpServer object.

Interfaces: ifHttpEvent, ifUserData

The ifHttpEvent interface provides the following:

• GetFailureReason() As String: Yields additional useful information if a function return indicates an error.
• GetMethod() As String: Returns the type of HTTP method that triggered the event on the roHttpServer

instance.
• SetResponseBodyString(body As String): Sets the response body for an event generated via the

AddGetFromEvent() or AddMethodToString() method on the roHttpServer object. This call is ignored with
any other event.

• SetResponseBodyFile(filename As String) As Boolean: Specifies the name of a file to use as the
source response body for an event generated via the AddGetFromEvent() or AddMethodToString() method
on the roHttpServer object. This call is ignored with any other event. This function will return False if the file cannot
be opened or another failure occurs.

Note: The specified file is read gradually as it is sent to the client.
• GetRequestBodyString() As String: Returns the string received if the event was generated via

roHttpServer.AddPostToString(). An empty string is returned with any other event.
• GetRequestBodyFile() As String: Returns the name of the temporary file created if the event is generated

via roHttpServer.AddGetFromEvent.This call is ignored with any other event.
• GetRequestHeader(header_name As String) As String: Returns the value of the specified HTTP

request header. If the header does not exist, an empty string is returned.
• GetRequestHeaders() As Object: Returns an roAssociativeArray containing all the HTTP request headers.
• GetRequestParam(URI_parameter As String) As String: Returns the value of the specified URI

parameter. If the parameter does not exist, an empty string is returned.

191

• GetRequestParams() As Object: Returns an roAssociativeArray containing all the URI parameters.
• AddResponseHeader(header As String, value As String) As Boolean: Adds the specified HTTP

header and value to the response. This function returns True upon success.
• AddResponseHeaders(a As Object) As Boolean. Adds the specified HTTP header/value pairs to the

response. This method expects an roAssociativeArray of header names mapped to header values, which can be of
type roString, roInt, or roFloat. Any other value types will cause the request to fail, though a subset of headers to
might be set before the failure occurs. This function returns True upon success.

• SendResponse(http_status_code As Integer) As Boolean: Sends the HTTP response using the
specified HTTP status code. To ensure that the response is sent, this function needs to be called once the script
has finished handling the event. This function returns False upon failure.

• GetUrl() As String

• GetFormData() As Object: Returns an roAssociativeArray containing all the form data.
See roHttpServer.AddPostToFormData for more information.

The ifUserData interface provides the following:

• SetUserData(user_data As Object): Sets the user data that will be returned when events are raised.
• GetUserData() As Object: Returns the user data that has previously been set via SetUserData(). It will

return Invalid if no data has been set.

192

roHttpServer
This object allows for processing of RESTful HTTP requests from remote URLs to the embedded web server of the
BrightSign player. Many of the requests are provided to the script as roHttpEvent objects for handling.

Object Creation: The roHttpServer object is created with an roAssociativeArray.

CreateObject("roHttpServer", parameters As roAssociativeArray)

Currently, the associative array can contain a single key:value pair:
• port: The port number of the embedded web server

Interfaces: ifHttpServer, ifSetMessagePort, ifGetMessagePort

The ifHttpServer interface provides the following:

• GetFailureReason() As String: Yields additional useful information if an roHttpServer method fails.
• AddGetFromString(parameters As roAssociativeArray) As Boolean: Causes any HTTP GET

requests for the specified URL path to be met directly with the contents of the "body" member of the parameter
associative array. The MIME type (and potentially the entire character set) should be specified if the request is
expected to come from a web browser. The request is handled entirely within the roHttpServer method; no events
are sent to the message port.

• AddGetFromFile(parameters As roAssociativeArray) As Boolean: Causes any HTTP GET requests
for the specified URL path to be met directly from the specified file. You should always specify the MIME type (and
possibly the character set) if you expect the request to come from a web browser. The request is handled entirely
within the roHttpServer method; no events are sent to the message port.

193

• AddGetFromEvent(parameters As roAssociativeArray) As Boolean: Requests that an event of type
roHttpEvent be sent to the configured message port. This occurs when an HTTP GET request is made for the
specified URL path.

• AddPostToString(parameters As roAssociativeArray) As Boolean: Requests that an event of type
roHttpEvent be sent to the configured message port. This occurs when an HTTP POST request is made for the
specified URL path. Use the roHttpEvent.GetRequestBodyString() method to retrieve the posted body.

• AddPostToFile(parameters As roAssociativeArray) As Boolean: Requests that, when an HTTP
POST request is made to the specified URL path, the request body be stored in a temporary file according to the
parameters["destination_directory"] value in the associative array. When this request is complete, an
roHttpEvent event is sent to the configured message port. Use the roHttpEvent.GetRequestBodyFile() method to
retrieve the name of the temporary file. If the file still exists at the time the response is sent, it will be automatically
deleted.

• AddPostToFormData(parameters As roAssociativeArray) As Boolean: Requests that, when an
HTTP POST request is made to the specified URL path, an attempt be made to store form data (passed as
application/x-www-form-urlencoded or multipart/form-data) in an associative array that can be
retrieved by calling the roHttpEvent.GetFormData() method.

• AddMethodFromEvent(parameters As roAssociativeArray) As Boolean: Requests that an event of
type roHttpEvent be sent to the configured message port. Unlike AddGetFromEvent(), this method can support
arbitrary HTTP methods. The HTTP method is specified using the method member in the associative array.

• AddMethodToFile(parameters As roAssociativeArray) As Boolean: Requests that, when an
arbitrary HTTP request is made to the specified URL path, the request body be stored in a temporary file according
to the parameters["destination_directory"] value in the associative array. The HTTP method is specified
using the method member in the associative array. When the request is complete, an roHttpEvent event is sent to
the configured message port. Use the roHttpEvent.GetRequestBodyFile() method to retrieve the name of the
temporary file. If the file still exists at the time the response is sent, it will be automatically deleted.

• AddMethodToString(parameters As roAssociativeArray) As Boolean: Attempts to support an
arbitrary HTTP method. The request body is placed in a string and an event is raised. This makes the request body

194

available via the roHttpEvent.GetRequestBodyString() method. A response can be sent in the same manner as the
AddGettoEvent method.

• SetupDWSLink(parameters As Dynamic) As Boolean: Generates a tab in the Diagnostic Web Server
(DWS) that links to files hosted by the roHttpServer instance. The tab will function differently depending on the
parameters passed to the method.

o title As String: Generates a tab with title that links directly to the base ip_address:port of the
roHttpServer instance.

o {title:[title As String], tab:”no”}: Generates a tab with title that links to a DWS page. This
page will contain a single link to the base ip_address:port of the roHttpServer instance.

o {title:[title As String], link1:[params As roAssociativeArray], link2:[params

As roAssociativeArray], ...,}: Generates a tab with title that links to a DWS page. This page
can contain any number of links to files hosted by the roHttpServer instance. Each link is configured with an
associative array containing the following key:value pairs:
 name: The name of the link on the DWS page
 url: The url_path of the file hosted by the roHttpServer instance (see the table below for details)

Example:

server1.SetupDWSLink("My AWS Link")

server2.SetupDWSLink({ title: "My AWS Link", tab: "no" })

server3.SetupDWSLink({ title: "Link> ", link1: { name: "Name 1", url: "/mylink1.jpg" },

link2: { name: "Name 2", url: "/mylink2.jpg" } })

The “Add” handler methods described above take an associative array as the parameter. Values in the associative array
specify how the handler behaves. The following table describes common key:value pairs:

195

Name Applies to Value

url_path all The path for which the handler method will be used

user_data GetFromEvent(),PostToString(),

PostToFile(),MethodToString()

A user-defined value that can be retrieved by calling

roHttpEvent.GetUserData()

method AddMethodFromEvent(),

AddMethodToFile()

The HTTP method associated with the generated roHttpEvent. The

method type can then be retrieved using roHttpEvent.GetMethod().

passwords all An associative array that contains a mapping between usernames and

passwords

auth all The authentication type to use when passwords are set. This value can

be either "basic" or "digest". The value defaults to “digest” if not

specified.

realm all The authentication realm, which will be displayed by web browsers

when prompting for a username and password

headers GetFromFile An associative array that contains arbitrary headers to be included with

the automated response

content_type GetFromFile The contents of the "Content-Type" header that is included with the

automated response. This may not be set at the same time as the

headers member. You can set both the MIME type and character set

together (e.g. "text/plain; charset=utf-8")

body GetFromString The response body

filename GetFromFile The path to the file used for the response body.

destination_directory PostToFile The path to the directory used for the temporary file containing the

request body. A random filename will be generated automatically.

196

The ifSetMessagePort interface provides the following:
• SetPort(a As Object)

The ifGetMessagePort interface provides the following:

• GetPort() As Object

197

roMediaServer
The roMediaServer object waits for client requests, deals with negotiation, and ultimately generates an roMediaStreamer
pipeline to fulfill the request. For more information, see the Media Server Developer’s Guide on the documentation page.
This object currently supports RTSP and HTTP requests. Requests from the client must take the following form:

protocol://IP_address:port/media_streamer_pipeline

• protocol: Either rtsp or http
• IP_address:port: The IP address of the BrightSign player and the port number on which the media server is

running.
• media_streamer_pipeline: A media streamer pipeline, but without the final destination component (as the

destination is implicit in the request from the client).

Object Creation: The roMediaServer object is created with no parameters

CreateObject("roMediaServer")

Interfaces: ifMediaServer, ifIdentity, ifMessagePort

The ifMediaServer interfaces provides the following:

• GetFailureReason() As String: Returns useful information if the Start(), Stop(), or Terminate()
methods return False.

• Start(a As String) As Boolean: Begins a media server instance. This method can be passed a string that
specifies the streaming protocol and the port number of the server:

s = CreateObject("roMediaServer")

s.Start("http:port=8080")

http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting�

198

A number of optional parameters can be added after the port parameter using an "&" (ampersand):
o trace: Displays a trace of messages in the negotiation with the client. This parameter is useful particularly

for debugging RTSP sessions. For example: "rtsp:port=554&trace"
o maxbitrate: Sets the maximum instantaneous bitrate (in Kbps) of the RTP transfer initiated by RTSP. This

parameter has no effect for HTTP. The parameter value 80000 (i.e. 80Mbps) has been found to work well.
The default behavior (also achieved by passing a zero value) is to not limit the bitrate at all. For example:
"rtsp:port=554&trace&maxbitrate=80000"

o threads: Sets the maximum number of threads the server is prepared to have running. Each thread
handles a single client request. The default value is "5". For example: "http:port=8080&threads=10"

• Stop() As Boolean: Stops the media server. This method signals all threads to stop, but does not wait for this
to happen before destroying the server instance.

• Terminate() As Boolean: Stops the media server. This method waits for all threads to stop before destroying
the server instance.

The ifIdentity interface provides the following:

• GetIdentity() As Integer

The ifMessagePort interface provides the following:

• SetPort(a As Object)

199

roMediaStreamer
The current implementation of this object allows an XD player to stream .ts files over UDP and RTP. Additional streaming
protocols and media file formats will be added as streaming functionality is developed. For more information, see the
Media Server tech note on the documentation page.

Object Creation: The roMediaStreamer object is created with no parameters.

CreateObject("roMediaStreamer")

Interfaces: ifMediaStreamer, ifIdentity, ifMessagePort

The ifMediaStreamer interface provides the following:

• GetFailureReason() As String

• SetPipeline(pipeline As String) As Boolean: Specifies a streaming pipeline. The source (a file URI)
and destination (an IP address) of the stream are specified in the passed stream. This method replaces the
SetSource() and SetDestination() methods from firmware version 4.7. To stream media as before, use the
filesimple source designation and the udpsimple/rtpsimple destination designations:

m = CreateObject("roMediaStreamer")

m.SetPipeline("filesimple:///data/clip.ts, udpsimple://239.192.0.0:1234/")

m.Start()

• Initialize() As Boolean: Progresses the pipeline into the INITIALIZED state. This allocates some resources
for the pipeline, but does not begin a stream.

• Connect() As Boolean: Progresses the pipeline into the CONNECTED state. This allows the script to create a
memory stream without starting it.

• Start() As Boolean: Begins streaming.

http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting�

200

• Stop() As Boolean: Stops the pipeline stream. Some internal pipeline stages may continue running.
• Disconnect() As Boolean: Regresses the steam back to the CONNECTED state.
• Reset() As Boolean: Resets the pipeline stream. All internal pipeline stages are terminated.
• Inject(a As Integer) As Boolean

The ifIdentity interface provides the following:

• GetIdentity() As Integer

The ifMessagePort interface provides the following:

• SetPort(a As Object)

Source Specifications
The string passed to the roMediaStreamer.SetPepline() method can have unique parameters that determine the source
type and playback behavior.

• Looping: By default, a stream from a media file will not loop when it ends. You can specify a looping parameter at
the end of the source string as follows: """filesimple:///data/example.mp4?loop". It is also possible to loop the
stream using end-of-stream messages from roMediaStreamerEvent. However, the slightly longer restart gap that
results from using BrightScript may cause problems with the streaming client. This is especially true if you attempt
to set a new media file source upon looping the function.

201

roMediaStreamerEvent
This object is sent by instances of roMediaStreamer. It provides information about the current state of an IP stream being
sent by the player.

Interfaces: ifUserData, ifMediaStreamerEvent

The ifUserData interface provides the following:

• SetUserData(user_data As Object): Sets the user data that will be returned when events are raised.
• GetUserData() As Object: Returns the user data that has previously been set via SetUserData(). It will

return Invalid if no data has been set.

The ifMediaStreamerEvent interface provides the following:
• GetEvent() As Integer: Returns an integer describing the status of an roMediaStreamer instance:

o 0 – EOS_NORMAL: The end of the stream has been reached without any errors being detected. This signal
is not sent if the loop parameter is specified using the roMediaStreamer.SetSource() method.

o 1 – EOS_ERROR: The stream has been aborted prematurely because of an error condition.

202

roMimeStream
This object passes an MJPEG stream in MIME format to the roVideoPlayer.PlayFile() method. There are some limitations
to what MJPEG streams this object will play correctly. roMimeStream has been optimized to play streaming video from a
local source with the smallest possible delay. The result is a short buffering window that is not appropriate for playing
MJPEG streams from URLs outside of a local network. We are currently optimizing roMimeStream to work with different
IP camera brands: see the IP Camera FAQ for more details.

Object Creation: To play an RTSP stream, first instantiate an roUrlTransfer object. Then wrap it in an roMimeStream
object and pass the PictureStream to PlayFile, as shown in the following example.

u=createobject("roUrlTransfer")

u.seturl("http://mycamera/video.mjpg")

r=createobject("roMimeStream", u)

p=createobject("roVideoPlayer")

p.PlayFile({ PictureStream: r })

Interfaces: ifPictureStream, ifMessagePort

The ifPictureStream interface provides the following:

• GetUrl() As String

The ifMessagePort interface provides the following:

• SetPort(a As Object) Posts event messages to the attached message port. The event messages are of the
type roMimeStreamEvent and will implement the ifInt interface. There are currently two possible event messages:

o PICTURE_STREAM_FIRST_PICTURE_AVAILABLE = 0: The first picture is now available for decoding.
o PICTURE_STREAM_CONNECT_FAILED: The object is unable to connect to the specified URL.

http://support.brightsign.biz/entries/21693211-does-the-brightsign-support-streaming-from-ip-camera�

203

roMimeStreamEvent
This object will return an integer corresponding to the event that has occurred:

Interfaces: ifInt

The ifInt interface provides the following:

• GetInt() As Integer

• SetInt(a As Integer)

204

roNetworkAdvertisement
This object is used to advertise services running on a BrightSign player to other devices on the network. The current
implementation supports advertising via mDNS (which is part of Zeroconf via Bonjour™).

Object creation: The roNetworkAdvertisement object is created with an associative array representing network parameters.

CreateObject("roNetworkAdvertisement", advertisement As roAssociativeArray) As Object

The roAssociativeArray can contain the following keys:

• name: The service name. This should be a readable string such as "Remote BrightSign Widget Service."
• type: The service type. This should be a service from the definitive list, formatted in the following manner:

"_service._protocol" (for example, "_http._tcp").
• Port: The port number on which the service runs.
• _name: Any arbitrary text key preceded by an underscore to avoid conflicts within the roAssociativeArray.

Note: The underscore is removed before the record is registered with mDNS.

Once the object is created, advertising starts immediately and continues until the object is destroyed (i.e. when it becomes
unreferenced).

Interfaces: None

Example

di = CreateObject("roDeviceInfo")

 props = { name: "My Hoopy Service", type: "_http._tcp", port: 8080, _serial:

di.GetDeviceUniqueId() }

 advert = CreateObject("roNetworkAdvertisement", props)

http://en.wikipedia.org/wiki/Zero_configuration_networking�
http://www.apple.com/support/bonjour/�

205

 ...

 ' Stop advertising

 advert = invalid

206

roNetworkAttached, roNetworkDetached

roNetworkAttached
This object implements ifInt to report the index of the attached network interface. Instances of this object are posted
by roNetworkHotplug when a configured network connection becomes available.
Note: It may take some time after the cable is inserted for this to take place.

Interfaces: ifInt, ifIntOps

The ifInt interface provides the following:

• GetInt() As Integer

• SetInt(a As Integer)

The ifIntOps interface provides the following:

• ToStr() As String

roNetworkDetached
This object implements ifInt to report an index of the detached network interface. Instances of this object are posted by
roNetworkHotplug when a configured network connection becomes unavailable.

The interfaces and methods for roNetworkDetached are identical to those outlined for roNetworkAttached above.

207

roNetworkConfiguration
This object provides various interfaces for configuring the network interfaces on a BrightSign player.

Object Creation: The roNetworkConfiguration object is created with a single parameter.

CreateObject("roNetworkConfiguration", network_interface as Integer)

The network_interface parameter is used to distinguish between the following:
• 0 for the Ethernet port (if available) on the rear of the BrightSign player.
• 1 for the optional internal Wi-Fi.

Note: Some of the settings are specific to the network interface, while others are used by the BrightSign host for all
network interfaces.

Interfaces: ifNetworkConfiguration, ifWiFiConfiguration, ifMessagePort, ifUserData

The ifNetworkConfiguration interface provides the following:

Note: "Set" methods do not take effect until Apply() is called.
• SetupDWS(settings As roAssociativeArray) As Boolean: Enables the Diagnostic Web Server (DWS).

Settings for the DWS are specified in an associative array that can have the following properties:
o port: The port number of the Diagnostic Web Server, located at the IP address of the player. Setting this

value to "default" will make the DWS accessible on the default port. Specifying only this parameter in the
associative array is equivelant to enabling the DWS without password protection.

o password: An obfuscated password for the DWS. This method uses digest access authentication.
Specifying this parameter without setting a port number will make the DWS accessible on the default port.

208

o open: An unobfuscated password for the DWS. This method uses digest access authentication. Specifying
this parameter without setting a port number will make the DWS accessible on the default port.

o basic: A flag indicating whether basic authentication should be used or not. Setting this parameter to True
allows the password set with the open parameter to be validated using basic authentication, rather than
digest access authentication. This option allows for backwards compatibility with older platforms; most, if not
all, modern browsers require basic authentication to be disabled in order to communicate with the DWS.

Note: The user name is "admin" for all authentication configurations.
• GetClientIdentifier() As String

• GetProxy() As String

• SetClientIdentifier(a As String) As Boolean

• SetLoginPassword(password As String): Specifies a login password for the SSH connection (if SSH has
been enabled in the registry).

• SetObfuscatedLoginPassword(password As String)

• SetObfuscatedWiFiPassphrase(password As String) As Boolean

• SetInboundShaperRate(rate As Integer) As Boolean: Sets the bandwidth limit for inbound traffic in bits
per second. For the default bandwidth limit, pass -1 to the method; for no bandwidth limit, pass 0 (though these
two settings are functionally the same). You will need to call Apply() for this setting to take effect, and changing
this setting at any time will cause the network interface to be taken down and reinitialized.

Note: Because of overhead on the shaping algorithm, attempting to limit the bandwidth at rates greater than
approximately 2Mbit/s will reduce speeds to less than the specified rate.
• SetRoutingMetric(a As Integer) As Boolean: Configures the metric for the default gateway on the

current network interface. Routes with lower metrics are preferred over routes with higher metrics. This function
returns True upon success.

• SetDHCP() as Boolean (interface): Enables DHCP and disables all other settings. This function returns True if
successful.

• SetIP4Address(ip As String) As Boolean (interface)
• SetIP4Netmask(netmask As String) As Boolean (interface)

209

• SetIP4Broadcast(broadcast As String) As Boolean (interface)
• SetIP4Gateway(gateway As String) As Boolean (interface): Sets the IPv4 interface configuration. All

values must be specified explicitly. Unlike the ifconfig shell command, there is no automatic inference. The
parameter is a string dotted decimal quad (i.e. "192.168.1.2" or similar). It returns True upon success.

Example:

nc.SetIP4Address("192.168.1.42")

nc.SetIP4Netmask("255.255.255.0")

nc.SetIP4Broadcast("192.168.1.255")

nc.SetIP4Gateway("192.168.1.1")

• SetWiFiESSID(essid as String) as Boolean (interface): Configures the name of the wireless network to
connect to. It returns True on success.

• SetWiFiPassphrase(passphrase as String) as Boolean: Configures the passphrase or key for the
wireless network. It returns True if successfully set.

• SetDomain(domain As String) As Boolean (host): Sets the device domain name. This will be appended to
names to fully qualify them, though it is not necessary to call this. This method returns True on success.

Example:

nc.SetDomain("brightsign.biz")

• AddDNSServer(server As String) (host): Adds another server to the list when the object is created and
there are no DNS servers. There is currently a maximum of three servers, but adding more will not cause any
errors. This method returns True on success. There is no way to remove all the servers; it will be easier to recreate
the object instead.

• GetFailureReason() As String: Returns additional information when a member function returns False.
• Apply() As Boolean: Applies the requested changes to the network interface. This may take several seconds

to complete.

210

• SetTimeServer(time_server As String) As Boolean (host): Sets the default time server, which is
"time.brightsignnetwork.com". You can disable the use of NTP by calling SetTimeServer(""). You can use URL
syntax to specify that the player use an HTTP or HTTPS server to synchronize the clock. The following are valid
time server addresses:

o http://time.brightsignnetwork.com/
o https://time.brightsignnetwork.com/
o ntp://time.brightsignnetwork.com/
o time.brightsignnetwork.com
Note: The last two addresses are equivalent.

• GetTimeServer() As String (host): Retrieves the time server currently in use.
• SetTimeServerIntervalSeconds(interval_in_seconds As Integer) As Boolean: Specifies how

often the player should communicate with the time server and adjust its clock via NTP. The default interval is 12
hours; passing a value of 0 specifies the default interval. The minimum interval allowed is 120 seconds.

• GetTimeServerIntervalSeconds() As Integer: Returns the current interval for NTP time-server renewal
(in seconds).

• SetHostName(name as String) as Boolean (host): Sets the device host name. If no host name has been
explicitly set, then a host name is automatically generated based on the device serial number. Passing an empty
string to this method resets the device host name to its automatically generated value.

• GetHostName() As String (host): Retrieves the host name currently in use.
• SetProxy(proxy as String) As Boolean (host): Sets the name or address of the proxy server used for

HTTP and FTP requests. This should be in the form of "http://user:password@hostname:port". It can contain up to
four "*" characters, which are each replaced with one octet from the current IP address. For example, if the IP
address is currently 192.168.1.2, and the proxy is set to "proxy-*-*", then the player will attempt to use a proxy
named "proxy-192.168".

• GetCurrentConfig() As Object: Retrieves the entire current configuration as an associative array containing
the following members:

mailto:password@hostname�

211

metric Integer Interface Returns the current routing metric for the interface.
See SetRoutingMetric for more details.

dhcp Boolean Interface

Returns True if the system is currently configured to use DHCP.
Returns False otherwise.

hostname String Host The currently configured host name

mdns_hostname String Host The Zeroconf host name currently in use. This may be longer
than the host name if there is a collision on the current network.

ethernet_mac String Interface The Ethernet MAC address

ip4_address

String Interface The current IPv4 address. If none is currently set, the string will
be empty.

ip4_netmask String Interface The current IPv4 network mask. If none is currently set, the string
will be empty.

ip4_broadcast String Interface The current IPv4 broadcast address. If none is currently set, the
string will be empty.

ip4_gateway String Interface The current IPv4 gateway address. If none is currently set, the
string will be empty.

domain String Host The current domain suffix

dns_servers roArray of
Strings

Host The currently active DNS servers

212

time_server String Host The current time server

configured_proxy String Host The currently configured proxy. This may contain magic
characters as explained under SetProxy above.

current_proxy String Host The currently active proxy. Any magic characters will have been
replaced as explained under SetProxy above.

shape_inbound Integer Interface The current bandwidth shaping for inbound traffic determined by
the SetInboundShaperRate() method.

type String Interface Either "wired" or "wifi"

link Boolean Interface Indicates whether the network interface is currently connected.

wifi_essid String Interface The name of the current Wi-Fi network (if any)

wifi_signal Integer Interface An indication of the received signal strength. The absolute value
of this field is usually not meaningful, but it can be compared with
the reported value on other networks or in different locations.

• TestInterface() As Object: Performs various tests on the network interface to determine whether it appears

to be working correctly. It reports the results via an associative array containing the following members:
ok Boolean This value is True if the tests find no problems, or False if at least one

problem was identified.
diagnosis String A single-line diagnosis of the first problem identified in the network interface.
log roArray of strings A complete log of all the tests performed and their results.

213

• TestInternetConnectivity() As Object: Performs various tests on the Internet connection (via any

available network interface, not necessarily the one specified when the roNetworkConfiguration object was created)
to determine whether it appears to be working correctly. It reports the results via an associative array containing the
following members:

ok Boolean This value is True if the tests find no problems, or False if at least one
problem was identified.

diagnosis String A single line diagnosis of the first problem identified with the Internet
connection.

log roArray of strings A complete log of all the tests performed and their results.

• GetNeighborInformation() As roAssociativeArray: Retrieves location information from the network
infrastructure using the LLDP-MED protocol. The information is returned as an associative array of strings
corresponding to civic-address types, which are defined as follows according to the LLDP-MED specification:

CAtype Label Description
1 A1 national subdivisions (state, region, province, prefecture)
2 A2 county, parish, gun(JP), district(IN)
3 A3 city, township, shi(JP)
4 A4 city division, borough, city district, ward, chou(JP)
5 A5 neighborhood, block
6 A6 street

CAtype NENA PIDF Description Examples

0 language i-default [3]

16 PRD PRD leading street direction N

17 POD POD trailing street suffix SW

214

18 STS STS street suffix Ave, Platz

19 HNO HNO house number 123

20 HNS HNS house number suffix A, 1/2

21 LMK LMK landmark or vanity address Columbia University

22 LOC LOC additional location information South Wing

23 NAM NAM name (residence and office occupant) Joe's Barbershop

24 ZIP PC postal/ZIP code 10027-1234

25 building (structure) Low Library

26 unit (apartment, suite) Apt 42

27 FLR floor 4

28 room number 450F

29 placetype office

30 PCN postal community name Leonia

31 post office box (P.O Box) 12345

32 additional code 13203000003

128 script Latn

255 reserved

The ifWiFiConfiguration interface provides the following:

• ScanWiFi() As Object: Scans for available wireless networks. The results are reported as an roArray
containing one or more associative arrays with the following members:

essid String Network name
bssid String Access point BSSID
signal Integer Received signal strength indication. The absolute value of this

field is not usually relevant, but it can be compared with the

215

reported value on other networks or in different locations.

The ifMessagePort interface provides the following:

• SetPort(a As Object): Posts event messages to the attached message port.

The ifUserData interface provides the following:

• SetUserData(user_data As Object): Associates an arbitrary object with the roNetworkConfiguration
instance that is provided via GetUserData() when an event is generated.

• GetUserData() As Object: Retrieves the arbitrary object set using SetUserData().

216

roNetworkHotplug
This object can be used to generate events when a network interface becomes available or unavailable. It will post events
of the type roNetworkAttached and roNetworkDetached to the associated message port.
Note: Reconfiguring a network interface using roNetworkConfiguration may cause it to detach and attach again.

To determine which network was attached or detached, the script needs to call roNetworkAttached.GetInt or
roNetworkDetached.GetInt. These methods provide an index of the network interface that was attached or detached.

Interfaces: ifSetMessagePort

The ifSetMessagePort interface provides the following:

• SetPort(a As Object)

217

roNetworkStatistics
This object allows you to monitor and post how much bandwidth the player is using.

Object Creation: The roNetworkStatistics object is created with a single parameter.

CreateObject("roNetworkStatistics", network_interface as Integer)

The network_interface parameter is used to distinguish between the following:

• 0 for the Ethernet port (if available) on the rear of the BrightSign player.
• 1 for the optional internal Wi-Fi.

Interfaces: ifNetworkStatistics

The ifNetworkStatistics interface provides the following:

• GetTotals() As roAssociativeArray: Yields the total network figures since booting up.
• GetIncremental() As roAssociativeArray: Yields the total network figures since booting up. Then, every

subsequent time this method is called, it will yield the amount each figure has changed since the previous call.
Note: If multiple instances of roNetworkStatistics are created, GetIncremental() calls for each instance will track
changes independently.

Both methods return the following statistics as floating point values:
o tx_carrier_errors

o tx_packets

o rx_packets

o tx_errors

o rx_frame_errors

218

o tx_bytes

o rx_errors

o tx_collisions

o rx_dropped

o tx_compressed

o rx_multicast

o tx_dropped

o rx_fifo_errors

o rx_bytes

o tx_fifo_errors

o rx_compressed

219

roRssParser, roRssArticle
roRssParser and roRssArticle are used to display an RSS ticker on the screen.

Object Creation: The roRssParser and roRssArticle objects are created with no parameters.

CreateObject("roRssParser")

Interfaces: ifRssParser, ifRssArticle

roRssParser uses the ifRssParser interface, which provides the following:

• ParseFile(filename As String) As Boolean: Parses an RSS feed from a file.
• ParseString(filename As String) As Boolean: Parses an RSS feed from a string.
• GetNextArticle() As Object: Gets the next article parsed by the RSS parser. The articles are sorted by

publication date, with the most recent article first. This returns an roRssArticle object if there is one. Otherwise, an
integer is returned.

roRssArticle uses the ifRssArticle interface, which provides the following:

• GetTitle() As String: Returns the title of the RSS item.
• GetDescription() As String: Returns the content of the RSS item.
• GetTimestampInSeconds(a As Integer) As Boolean: Returns in seconds the difference in publication

date between this RSS item and the most recent item in the feed. The user can utilize this to decide if an article is
too old to display.

• SetTitle(a As String) As Boolean

• SetDescription(a As String) As Boolean

• SetTimestampInSeconds(a As Integer) As Boolean

220

Example:
Note: For firmware versions 4.7.x and above, if no alpha value is specified when roTextWidget.SetForegroundColor() is
called, the text widget area will appear blank.

u=CreateObject("roUrlTransfer")

u.SetUrl("http://www.lemonde.fr/rss/sequence/0,2-3208,1-0,0.xml")

u.GetToFile("tmp:/rss.xml")

r=CreateObject("roRssParser")

r.ParseFile("tmp:/rss.xml")

EnableZoneSupport(1)

b=CreateObject("roRectangle", 0, 668, 1024, 100)

t=CreateObject("roTextWidget", b, 3, 2, 2)

t.SetForegroundColor(&hFFD0D0D0)

t.Show()

a = r.GetNextArticle()

while type(a) = "roRssArticle"

 t.PushString(a.GetDescription())

 sleep(1000)

 a = r.GetNextArticle()

end while

while true

 sleep(1000)

end while

http://www.lemonde.fr/rss/sequence/0,2-3208,1-0,0.xml�

221

roRtspStream
This is a simple object that is passed to the roVideoPlayer.PlayFile() method. There are some limitations to the RTSP
streams this object will play correctly. roRtspStream has been optimized to play streaming video from a local source with
the smallest possible delay. The result is a short buffering window that is not appropriate for playing RTSP streams from
URLs outside of a local network. We are currently optimizing roRtspStream to work with different IP camera brands: See
the IP Camera FAQ for more details.

Object Creation: To play an RTSP stream, instantiate an roRtspStream object with a URL as its argument. Then pass it to
the playfile() method as shown in the following example:

r=createobject("roRtspStream", "rtsp://172.30.1.194/axis-media/media.amp")

p=createobject("roVideoPlayer")

p.PlayFile({Rtsp: r})

Interfaces: ifRtspStream, ifMessagePort

The ifRtspStream interface provides the following:

• GetUrl() As String

The ifMessagePort interface provides the following:
• SetPort(a As Object): Posts event messages to the attached message port. The event messages are of the

type roRtspStreamEvent and will implement the ifInt interface.

http://support.brightsign.biz/entries/21693211-does-the-brightsign-support-streaming-from-ip-camera�

222

roShoutcastStream

Object creation: The roShoutcastStream object takes a URL object, a maximum buffer size (in seconds), and an initial
buffering duration (in seconds).

CreateObject("roShoutcastStream", url_transfer, buffer size, buffer duration)

Interfaces: ifShoutcastStream, ifSetMessagePort, ifSourceIdentity

The ifShoutcastStream interface provides the following:

• GetUrl() As String

• GetBufferedDuration() As Integer

• GetTimeSinceLastData() As Integer

• GetCurrentMetadata() As String

• Rebuffer() As Boolean

• AsyncSaveBuffer(a As String) As Boolean

• RestartBufferRecord() As Boolean

The ifSetMessagePort interface provides the following:

• SetPort(a As Object)

The ifSourceIdentity interface provides the following:
• GetSourceIdentity() As Integer

• SetSourceIdentity(a As Integer)

223

roShoutcastStreamEvent

Interfaces: ifInt, ifSourceIdentity

The ifInt interface provides the following:

• GetInt() As Integer

• SetInt(a As Integer)

The ifSourceIdentity interface provides the following:
• GetSourceIdentity() As Integer

• SetSourceIdentity(a As Integer)

224

roSnmpAgent
When this object is created, it starts an SNMP process that handles some standard SNMP MIBs such as system uptime.
Prior to starting the roSnmpAgent, you can register other OIDs for handling. You can set and retrieve these both by an
SNMP client and by the script.

OID values are retrieved by an SNMP client without script interaction, and setting these values simply generates an event
from roSnmpAgent stating that it has been changed. The script event handler can then retrieve new values and take
appropriate action.

Interfaces: ifSnmpAgent, ifSetMessagePort

The ifSnmpAgent interface provides the following:

• AddOidHandler(a As String, b As Boolean, c As Object) As Boolean

• GetOidValue(a As String) As Object

• SetOidValue(a As String, b As Object) As Boolean

• Start() As Boolean

The ifSetMessagePort interface provides the following:

• SetPort(a As Object)

• Interface ifGetMessagePort:

• GetPort() As Object

225

roSnmpEvent

Interfaces: ifString, ifStringOps

The ifString interface provides the following:

• GetString() As String

• SetString(a As String)

The ifStringOps interface provides the following:

Note: The function indexes of ifStringOps methods start at zero, while the function indexes of global methods start at
one.
• SetString(str As String, str_len As Integer): Sets the string using the specified string and string-

length values.
• AppendString(str As String, str_len As Integer): Appends the string using the specified string and

string-length values. This method modifies itself—this can cause unexpected results when you pass an intrinsic
string type, rather than a string object.
Example:

x="string"

x.ifstringops.appendstring("ddd",3)

print x 'will print 'string'

y=box("string")

y.ifstringops.appendstring("ddd",3)

print y 'will print 'stringddd'

• Len() As Integer

226

• GetEntityEncode() As String

• Tokenize(delim As String) As Object

• Trim() As String

• ToInt() As Integer

• ToFloat() As Float

• Left(chars As Integer) As String

• Right(chars As Integer) As String

• Mid(start_index As Integer) As String

• Mid(start_index As Integer, chars As Integer) As String

• Instr(substring As String) As Integer

• Instr(start_index As Integer, substring As String) As Integer

227

roStreamByteEvent

Interfaces: ifInt, ifUserData

The ifInt interface provides the following:

• GetInt() As Integer

• SetInt(a As Integer)

The ifUserdata interface provides the following:

• SetUserData(user_data As Object): Sets the user data that will be returned when events are raised.
• GetUserData() As Object: Returns the user data that has previously been set via SetUserData(). It will

return Invalid if no data has been set.

228

roStreamConnectResultEvent
This event is sent to a message port associated with an roTCPStream object when an AsyncConnectTo() request has
been completed or has failed.

Interfaces: ifInt, ifUserData

The ifInt interface provides the following:

• GetInt() As Integer: Returns the result code of the event. If the connection was successfully established,
then this method will return 0. If connection failed for any reason, this method will return a non-zero integer.

• SetInt(a As Integer)

The ifUserData interface provides the following:

• SetUserData(user_data As Object): Sets the user data that will be returned when events are raised.
• GetUserData() As Object: Returns the user data that has previously been set via SetUserData(). It will

return Invalid if no data has been set.

229

roStreamEndEvent

Interfaces: ifInt, ifUserData

The ifInt interface provides the following:

• GetInt() As Integer

• SetInt(a As Integer)

The ifUserData interface provides the following:

• SetUserData(user_data As Object): Sets the user data that will be returned when events are raised.
• GetUserData() As Object: Returns the user data that has previously been set via SetUserData(). It will

return Invalid if no data has been set.

230

roStreamLineEvent

Interfaces: ifUserData, ifString

The ifUserData interface provides the following:

• SetUserData(user_data As Object): Sets the user data that will be returned when events are raised.
• GetUserData() As Object: Returns the user data that has previously been set via SetUserData(). It will

return Invalid if no data has been set.

The ifString interface provides the following:

• GetString() As String

• SetString(a As String)

231

roSyncManager
This object provides advanced synchronization capabilities for video walls and other deployments that require closely
calibrated interaction among players. roSyncManager handles all network traffic for master/slave synchronization,
including the network clock. Multiple synchronization groups are allowed on the same local network and even within the
same video wall.

Before using roSyncManager, you will need to instantiate a synchronization group by setting all players within the group to
the same PTP domain value. To do this, use the roRegistrySection.Write() method to set the ptp_domain key of the
“networking” section to a value between 0 and 127. In general, changes to the registry only take effect after a reboot, so
the PTP synchronization service will start on each player after it is rebooted.

Example:

regSec = CreateObject("roRegistrySection", "networking")

regSec.Write("ptp_domain", "0")

regSec.Flush()

RebootSystem()

Object Creation: The roSyncManager object is created with an associative array representing a set of parameters.

CreateObject("roSyncManager", parameters as roAssociativeArray)

The associative array can have the following members:

• Domain: A string that is used to distinguish among different roSyncManager instances within the same
synchronization group (i.e. PTP domain). The default string is "BrightSign". This parameter allows multiple
roSyncManager instances to operate at the same time.

232

• MulticastAddress: A string specifying to which multicast address synchronization messages are communicated.
The default address is "224.0.126.10".

• MulticastPort: A string specifying to which multicast port synchronization messages are communicated. The
default port is "1539".

Interfaces: ifMessagePort, ifSyncManager

The ifMessagePort interface provides the following:

• SetPort(port as Object)

The ifSyncManager provides the following:

• SetMasterMode(master_mode As Boolean) As Boolean: Specifies whether the unit is running the master
instance of roSyncManager.

• Synchronize(identifier As String, ms_delay As Integer) As Object: Configures how the master
unit will broadcast the time-stamped event to other players. It continues to send out this event every second to
allow slave units that are powered on late to catch up. The network message contains the sync ID, as well as the
domain and a timestamp. The timestamp is created at the point when this method is called; however, it can be
offset by passing a non-zero ms_delay, allowing synchronization points to be set slightly in the future and giving
the client enough time to switch video files and perform other actions. The event is returned from the call so that
the caller can access the timestamp. The identifier parameter allows scripts to pass a filename, or some other
useful marker, to the slave units as part of the synchronization message.

Note: Because synchronization can involve slave units seeking to catch up with the playback of a master unit, we
recommend using the more efficient MOV/MP4 container format when synchronizing video files. Transport Stream files
(MPEG-TS) are also supported, but they must begin with a presentation timestamp (PTS) of 0. Program Stream files
(MPEG-PS) are not supported.

233

Currently, there are two objects that can accept synchronization parameters: The roVideoPlayer PlayFile() call
accepts the parameters provided by ifSyncManagerEvent messages, while the roImagePlayer DisplayFile() and
PreloadFile() calls accept SyncIsoTimestamp in an associative array. To synchronize image playback, an
roImagePlayer object will simply delay the transition thread prior to running the transition. If there is a separate call for
DisplayFile(), then the transition will be cancelled and the image will be displayed immediately (as with non-
synchronized DisplayFile() calls).

Example

' Create a sync manager with default address and port.

aa1=CreateObject("roAssociativeArray")

aa1.Domain = "BS1"

s=CreateObject("roSyncManager", aa1)

p=CreateObject("roMessagePort")

s.SetPort(p)

' Create a video player - we're going to play a seamlessly looped file

v=CreateObject("roVideoPlayer")

v.SetLoopMode(1)

' THIS SECTION IS ONLY DONE BY THE MASTER

' We're the master unit - send out a synchronize event saying that we're starting.

' playback 1000ms from now

s.SetMasterMode(1)

msg = s.Synchronize("Blah1", 1000)

' THIS SECTION IS ONLY DONE BY THE SLAVE

' We're a slave unit, and we're sitting waiting for a sync message.

234

msg=Wait(4000, p)

' EVERYONE DOES THE REST

aa=CreateObject("roAssociativeArray")

aa.Filename = "Text_1.mov"

aa.SyncDomain = msg.GetDomain()

aa.SyncId = msg.GetId()

aa.SyncIsoTimestamp = msg.GetIsoTimestamp()

v.PlayFile(aa)

235

roSyncManagerEvent
These events are generated on slave units in response to roSyncManager.Synchronize() calls from the master unit. The
roSyncManager on each slave unit will handle message duplicates, so the script will receive the sync message only once
during normal operations.

If the slave unit is already booted up, then the event will arrive from the first network event generated by
roSyncManager.Synchronzie(). On the other hand, if the slave unit is booted up while the master is in the middle of
playing a video file or displaying an image file, then one of the message resends (generated at one second intervals by
the master unit) will trigger the event. The script passes on the data from the event to the PlayFile() command of the
video player or the DisplayFile() command of the image player, which will then determine how far forward in the file it
needs to seek.

Interfaces: ifUserData, ifSyncManagerEvent

The ifUserData interface provides the following:

• SetUserData(user_data As Object): Sets the user data that will be returned when events are raised.
• GetUserData() As Object: Returns the user data that has previously been set via SetUserData(). It will

return Invalid if no data has been set.

The ifSyncManagerEvent interface provides the following:
• GetDomain() As String: Returns the domain of the sync group, which is specified during creation of

the roSyncManager object on the master unit.
• GetId() As String: Returns the identifier of the event.
• GetIsoTimestamp() As String: Returns the timestamp of the event in ISO format.

236

roTCPConnectEvent
The event is posted when a new connection is made to an roTCPServer port. The normal response to receiving such an
event is to create a new roTCPStream object and pass the event to its AcceptFrom call.

Interfaces: ifUserData, ifSocketInfo, ifInternalGetTCPStream

The ifUserData interface provides the following:

• SetUserData(user_data As Object): Sets the user data that will be returned when events are raised.
• GetUserData() As Object: Returns the user data that has previously been set via SetUserData(). It will

return Invalid if no data has been set.

The ifSocketInfo interface provides the following:
• GetSourceAddress() As String: Returns the IP address of the remote end of the TCP connection.

237

roTCPServer

Interfaces: ifTCPServerInstance, ifUserData

The ifTCPServerInstance interface provides the following:

• GetFailureReason() As String: Yields additional useful information if an roTCPServer method fails.
• SetPort(port As Object): Sets the message port that will receive events from an roTCPServer instance.
• BindToPort(port As Dynamic) As Boolean: Prepares to accept incoming TCP connections on the

specified port. Passing an integer to this method will specify a standard port number. This method can also accept
an index of integer interfaces contained within an associative array, which can contain the following members:

o -1: Any (this is the default value)
o 0: Ethernet
o 1: WiFi
o 2: Modem

o 32767: Loopback (i.e. TCP connections can only be established by internal sources)

The ifUserData interface provides the following:

• SetUserData(a As Object): Supplies an object that will be provided by every event called by an roTCPServer
instance.

• GetUserData() As Object

238

roTCPStream

Interfaces: ifStreamReceive, ifUserData, ifStreamSend, ifTCPStream

The ifStreamReceive interface provides the following:

• SetLineEventPort(a As Object)

• SetByteEventPort(a As Object)

• SetReceiveEol(a As String)

• SetMatcher(matcher As Object) As Boolean: Instructs the stream to use the specified matcher. This
object returns True if successful. Pass Invalid to this method to stop using the specified matcher.

The ifUserData interface provides the following:

• SetUserData(a As Object): Supplies an object that will be provided by every event called by an
roTCPStream instance.

• GetUserData() As Object

The ifStreamSend interface provides the following:

• SetSendEol(eol_sequence As String) As Void: Sets the EOL sequence when writing to the stream.
• SendByte(byte As Integer) As Void: Writes the specified byte to the stream.
• SendLine(string As String) As Void: Writes the specified characters to the stream followed by the

current EOL sequence.
• SendBlock(a As Dynamic) As Void: Writes the specified characters to the stream. This method can support

either a string or an roByteArray. If the block is a string, any null bytes will terminate the block.
• Flush()

The ifTCPStream interface provides the following:

239

• GetFailureReason() As String: Yields additional useful information if an roTCPStream method fails.
• ConnectTo(a As String, b As Integer) As Boolean: Connects the stream to the specified host

(designated using a dotted quad) and port. The function returns True upon success.
• Accept(a As Object) As Boolean: Accepts an incoming connection event. The function returns True upon

success.
• AsyncConnectTo(a As String, b As Integer) As Boolean: Attempts to connect the stream to the

specified host (designated using a dotted quad) and port. The function returns False if this action is immediately
impossible (for example, when the specified host is not in the correct format). Otherwise, the function returns True
upon success. The connect proceeds in the background, and an roStreamConnectResultEvent is posted to the
associated message port when the connect attempt succeeds or fails.

240

roUrlStream
This object allows playback of content from a URL; the current implementation is only designed to work from local NAS
storage.

This object is created with an associated roUrlTransfer object, as well as a number of other numeric parameters that
define buffer size, etc. The roUrlTransfer object defines the retrieval URL and is documented separately.

To use the final object to play back content, you must put the object into an associative array with the parameter name
"Url". This array can then be sent to roVideoPlayer.PlayFile() for playback.

Interfaces: ifUrlStream

The ifUrlStream interface provides the following:

• GetUrl() As String

• GetBufferSize() As Integer

• GetRewindSize() As Integer

• GetMinimumFill() As Integer

241

roUrlTransfer
This object is used for reading from and writing to remote servers through URLs. It reports transfer status using
the roUrlEvent object.

Object Creation: The roUrlTransfer object is created with no parameters.

CreateObject("roUrlTransfer")

Important: You must create a separate roUrlTransfer instance for each asset you wish to read/write.

Interfaces: ifUserData, ifIdentity, ifSetMessagePort, ifGetMessagePort, ifUrlTransfer

The ifUserData interface provides the following:
• SetUserData(user_data As Object): Associates an arbitrary object with the roUrlTransfer instance that is

provided via roUrlEvent.GetUserData() when an event is generated.
• GetUserData() As Object: Retrieves the arbitrary object set using SetUserData().

The ifIdentity interface provides the following:

• GetIdentity As Integer: Returns a unique number that can be used to identify when events originate from
this object.

The ifSetMessagePort interface provides the following:

• SetPort(port As ifMessagePort) As Void: Sets the message port to which events will be posted for
asynchronous requests.

The ifGetMessagePort interface provides the following:

242

• GetPort() As Object

The ifUrlTransfer interface provides the following:

• SetUrl(URL As String) As Boolean: Sets the URL for the transfer request. This function returns False on
failure. Use GetFailureReason to learn the reason for the failure.

Note
When using SetUrl to retrieve content from local storage, you do not need to specify the full file path:
SetUrl("file:/example.html"). If the content is located somewhere other than the current storage device, you
can specify it within the string itself. For example, you can use the following syntax to retrieve content from a storage
device inserted into the USB port when the current device is an SD card:
SetUrl("file:///USB1:/example.html").

• AddHeader(name As String, value As String) As Boolean: Adds the specified HTTP header. This is

only valid for HTTP URLs. This function returns False on failure. Use GetFailureReason() to learn the reason
for the failure.

• GetToString As String: Connects to the remote service as specified in the URL and returns the response
body as a string. This function cannot return until the exchange is complete, and it may block for a long time.
Having a single string return means that much of the information (headers, response codes) has been discarded. If
you need this information, you can use AsyncGetToString() instead.
Note: The size of the returned string is limited to 65,536 characters.

• GetToFile(filename As String) As Integer: Connects to the remote service as specified in the URL and
writes the response body to the specified file. This function does not return until the exchange is complete and may
block for a long time. The response code from the server is returned. It is not possible to access any of the
response headers. If you need this information, use AsyncGetToFile() instead.

243

• AsyncGetToString As Boolean: Begins a GET request to a string asynchronously. Events will be sent to the
message port associated with the object. If False is returned, then the request could not be issued and no events
will be delivered.

• AsyncGetToFile(filename As String) As Boolean: Begins a GET request to a file asynchronously.
Events will be sent to the message port associated with the object. If False is returned, then the request could not
be issued and no events will be delivered.

• EnableResume(enable As Boolean) As Boolean: Specifies the file-creation behavior of the GetToFile()
and ASyncGetToFile() methods. If this method is set to False (the default setting), each download will generate
a temporary file: if the download is successful, the temporary file will be renamed to the specified filename; if the
download fails, the temporary file will be deleted. If this method is set to True, the file with the specified filename
will be created regardless of whether the download is successful or not—this allows the download to be resumed
by a subsequent GetToFile() or ASyncGetToFile() call.

• Head() As Object: Synchronously perform an HTTP HEAD request and return the resulting response code and
headers through an roUrlEvent object. In the event of catastrophic failure (e.g. an asynchronous operation is
already active), a null object is returned.

• AsyncHead() As Boolean: Begins an ansynchronous HTTP HEAD request. Events will be sent to the message
port associated with the object. If the request could not be issued, the method will return False and will not deliver
any events.

• PostFromString(request As String) As Integer: Uses the HTTP POST method to post the supplied
string to the current URL and return the response code. Any response body is discarded.

• PostFromFile(filename As String) As Integer: Uses the HTTP POST method to post the contents of
the file specified to the current URL and then return the response code. Any response body is discarded.

• AsyncPostFromString(request As String) As Boolean: Uses the HTTP POST method to post the
supplied string to the current URL. Events of type roUrlEvent will be sent to the message port associated with the
object. A False return indicates that the request could not be issued and no events will be delivered.

• AsyncPostFromFile(filename As String) As Boolean: Uses the HTTP POST method to post the
contents of the specified file to the current URL. Events of the type roUrlEvent will be sent to the message port

244

associated with the object A False return indicates that the request could not be issued and no events will be
delivered.

• SetUserAndPassword(user As String, password As String) As Boolean: Enables HTTP
authentication using the specified user name and password. Note that HTTP basic authentication is deliberately
disabled due to it being inherently insecure. HTTP digest authentication is supported.

• SetMinimumTransferRate(bytes_per_second As Integer, period_in_seconds As Integer) As

Boolean: Causes the transfer to be terminated if the rate drops below bytes_per_second when averaged
over period_in_seconds. Note that if the transfer is over the Internet, you may not want to set period_in_seconds
to a small number in case network problems cause temporary drops in performance. For large file transfers and a
small bytes_per_second limit, averaging fifteen minutes or more might be appropriate.

• GetFailureReason As String: May provide additional information if any of the roUrlTransfer methods indicate
failure.

• SetHeaders(a As Object) As Boolean

• AsyncGetToObject(type As String) As Boolean: Begins an asynchronious GET request and uses the
contents to create an object of the specified type. Events will be sent to the message port associated with the
object. If this method returns False, the request could not be issued and no events will be delievered.

• AsyncCancel() As Boolean

• EnableUnsafeAuthentication(enable As Boolean) As Boolean: Supports basic HTTP authentication if
True. HTTP authentication uses an insecure protocol, which might allow others to easily determine the password.
The roUrlTransfer object will still prefer the stronger digest HTTP if it is supported by the server. If this method is
False (which is the default setting), it will refuse to provide passwords via basic HTTP authentication, and any
requests requiring this authentication will fail.

• EnableUnsafeProxyAuthentication(enable As Boolean) As Boolean: Supports basic HTTP
authentication against proxies if True (which, unlike EnableUnsafeAuthentication(), is the default setting).
HTTP authentication uses an insecure protocol, which might allow others to easily determine the password. If this
method is False, it will refuse to provide passwords via basic HTTP authentication, and any requests requiring this
authentication type will fail.

245

• EnablePeerVerification(a As Boolean) As Boolean

• EnableHostVerification(a As Boolean) As Boolean

• SetCertificatesFile(a As String) As Boolean

• EnableEncodings(a As Boolean) As Boolean: Communicates to the server that the system can accept
any encoding that the roUrlTransfer object is capable of decoding by itself. This currently includes "deflate" and
"gzip", which allow for transparent compression of responses. Clients of roUrlTransfer see only the decoded data
and are unaware of the encoding being used.

• SetUserAndPassword(a As String, b As String) As Boolean

• Head() As Object: Performs a synchronous HTTP HEAD request and returns the resulting response code and
headers through an roURLEvent object. In the event of catastrophic failure (e.g. an asynchronous operation is
already active), a null object is returned.

• Escape(unescaped As String) As String: Converts the provided string to a URL-encoded string. All
characters that could be misinterpreted in a URL context are converted to the %XX form.

• Unescape(a As String) As String

• GetUrl() As String

• SetProxy(a As String) As Boolean

• SetTimeout(milliseconds As Integer) As Boolean: Terminates the transfer if the request takes longer
than the specified number milliseconds. Note that this includes the time taken by any name lookups, so setting this
value too low will cause undesirable results. Passing 0 to the method disables the timeout. This method returns
True upon success and False upon failure. In the event of failure, using the GetFailureReason() method may
provide more information. If the operation times out, the status return is -28.

• SetUserAgent(a As String) As Boolean

• PutFromString(a As String) As Integer: Uses the HTTP PUT method to write the supplied string to the
current URL and return the response code. Any response body is discarded; use roUrlTransfer.SyncMethod to
retrieve the response body.

246

• PutFromFile(a As String) As Integer: Uses the HTTP PUT method to write the contents of the specified
file to the current URL and return the response code. Any response body is discarded; use
roUrlTransfer.SyncMethod to retrieve the response body.

• AsyncPutFromString(a As String) As Boolean: Uses the HTTP PUT method to write the supplied string
to the current URL. Events of type roUrlEvent will be sent to the message port associated with the object. A False
return indicates that the request could not be issued and no events will be delivered. Any response body is
discarded; use roUrlTransfer.AsyncMethod to retrieve the response body.

• AsyncPutFromFile(a As String) As Boolean : Uses the HTTP PUT method to write the contents of the
specified file to the current URL. Events of type roUrlEvent will be sent to the message port associated with the
object. A False return indicates that the request could not be issued and no events will be delivered. Any response
body is discarded; use roUrlTransfer.AsyncMethod to retrieve the response body.

• Delete() As Object: Uses the HTTP DELETE method to delete the resource at the current URL and return the
response code. Any response body is discarded; use roUrlTransfer.SyncMethod to retrieve the response body.

• AsyncDelete() As Boolean: Uses the HTTP DELETE method to delete the resource at the current URL.
Events of type roUrlEvent will be sent to the message port associated with the object. A False return indicates that
the request could not be issued and no events will be delivered. Any response body is discarded; use
roUrlTransfer.AsyncMethod to retrieve the response body.

• ClearHeaders(): Removes all headers that would be supplied with an HTTP request.
• AddHeaders(a As Object) As Boolean: Adds one or more headers to HTTP requests. Pass headers to this

object as an roAssociativeArray of name/value pairs. This method returns True upon success and False upon
failure. All headers that are added with this method will continue to be sent with HTTP requests until
ClearHeaders()is called.

• SyncMethod(a As Object) As Object: Performs a synchronous HTTP method request using the specified
parameters. If the request is started successfully, then the method returns an roUrlEvent object containing the
results of the request. This method returns Invalid if the the request could not be started. In this case, the
GetFailureReason() method may provide more information.

247

• SetRelativeLinkPrefix(prefix As String) As Boolean: Places the specified prefix in front of the URL
if the URL is relative. Use this method to easily make file:/// URLs drive agnostic.

• BindToInterface(interface As Integer) As Boolean: Ensures that the request only goes out over the
specified network interface. By default, the request goes out over the most appropriate network interface (which
may depend on the routing metric configured via roNetworkConfiguration). Note that if both interfaces are on the
same layer 2 network, this method may not always work as expected due to the Linux weak host model. The
default behavior can be selected by passing -1 to the method. This method returns False upon failure. In this case,
the GetFailureReason() method may provide more information.

• AsyncMethod(parameters As roAssociativeArray) As Boolean: Begins an asynchronous HTTP
method request using the specified parameters (see below). If the request is started successfully, the method
returns True and and will deliver an event. If the request could not be started, then the method returns False and
will not deliver an event. If this occurs, you may be able to use the GetFailureReason() method to get more
information.

The parameters are sepecifed using an roAssociativeArray instance that may contain the following members:

Name Type Description

method String An HTTP method. Normal values include "HEAD", "GET", "POST", "PUT", and

"DELETE". Other values are supported; however, depending on server behavior, they

may not work as expected.

request_body_string String A string containing the request body.

request_body_file String The name of a file that contains the request body

response_body_string Boolean If specified and set to True, the response will be stored in a string and provided via the

roUrlEvent.GetString() method.

response_body_file String The name of the file that will contain the response body. The body is written to a

temporary file and then renamed to the specified filename if successful.

response_body_resume_file String The name of the file that will contain the response body. For a GET request, a RANGE

248

header is sent based on the current size of the file, which is written in place rather than

using a temporary file.

response_body_object String Uses the response body to create an object of the specified type. See the entry

for AsyncGetToObject() for supported object types.

response_pipe roArray Use a pipeline of handlers to process the response body as it is received. See below

for more details.

The roArray response for response_pipe consists of one or more roAssociativeArray instances containing a filter
description (see below). The last associative array is usually an output filter.

Name Type Description
hash String Calculate a hash (digest) of the data using the specified algorithm as it passes through

the pipeline. Supported hashes include the following: "CRC32", "MD5", "SHA1",

"SHA256", "SHA384", "SHA512". The resulting hash can be retrieved as a

hexadecimal string using the roUrlEvent.GetHash() method.

decompress String Decompress the response body using the specified algorithm. Currently, the only

supported algorithm is “gzip”. It is often easier to use an HTTP Content-Encoding

rather than explicitly decompressing the body.

prefix_capture Integer Capture the specified number of bytes (between 1 and 16384) from the start of the

stream and store them separately. The bytes can be retrieved using the

roUrlEvent.GetPrefix() method, but they cannot be passed on to subsequent filters.

output file String Output the pipeline to the specified file. The output is written to a temporary file and

then renamed to the specified filename if successful.

output_string Boolean If specified and set to True, the response will be stored in a string and provided via the

roUrlEvent.GetString() method.

Example: The following code specifies an array of handlers to filter the response body of an HTTP request.

249

url = CreateObject("roUrlTransfer")

pipe = [{ decompress: "gzip"}, { hash: "MD5" }, { output_file: "test.txt" }]

result = url.AsyncMethod({ method: "GET", response_pipe: pipe })

250

roUrlEvent
This event is generated by the roUrlTransfer object.

Interfaces: ifInt, ifUserData, ifUrlEvent, ifString, ifSourceIdentity

The ifInt interface provides the following:

• GetInt() As Integer: Returns the type of event. The following event types are currently defined: transfer
complete (1), transfer started (2).

The ifUserData interface provides the following:

• SetUserData(user_data As Object): Sets the user data that will be returned when events are raised.
• GetUserData() As Object: Retrieves an arbitrary object set via the SetUserData() method of the

roUrlTransfer instance that generated this event.

The ifUrlEvent interface provides the following:
• GetResponseCode() As Integer: Returns the protocol response code associated with an event. The following

codes indicate success:
o 200: Successful HTTP transfer
o 226: Successful FTP transfer
o 0: Successful local file transfer

For unexpected errors, the return value is negative. There are many possible negative errors from the CURL library,
but it is often best to look at the text version by calling GetFailureReason.

Here are some potential errors. Not all of them can be generated by a BrightSign player:
Status Name Description

-1 CURLE_UNSUPPORTED_PROTOCOL

251

-2 CURLE_FAILED_INIT
-3 CURLE_URL_MALFORMAT
-5 CURLE_COULDNT_RESOLVE_PROXY
-6 CURLE_COULDNT_RESOLVE_HOST
-7 CURLE_COULDNT_CONNECT
-8 CURLE_FTP_WEIRD_SERVER_REPLY

-9 CURLE_REMOTE_ACCESS_DENIED A service was denied by the server due to lack of access.
When login fails, this is not returned.

-11 CURLE_FTP_WEIRD_PASS_REPLY
-13 CURLE_FTP_WEIRD_PASV_REPLY
-14 CURLE_FTP_WEIRD_227_FORMAT
-15 CURLE_FTP_CANT_GET_HOST
-17 CURLE_FTP_COULDNT_SET_TYPE
-18 CURLE_PARTIAL_FILE
-19 CURLE_FTP_COULDNT_RETR_FILE
-21 CURLE_QUOTE_ERROR Failed quote command
-22 CURLE_HTTP_RETURNED_ERROR
-23 CURLE_WRITE_ERROR
-25 CURLE_UPLOAD_FAILED Failed upload command.
-26 CURLE_READ_ERROR Could not open/read from file.
-27 CURLE_OUT_OF_MEMORY
-28 CURLE_OPERATION_TIMEDOUT The timeout time was reached.
-30 CURLE_FTP_PORT_FAILED FTP PORT operation failed.
-31 CURLE_FTP_COULDNT_USE_REST REST command failed.
-33 CURLE_RANGE_ERROR RANGE command did not work.
-34 CURLE_HTTP_POST_ERROR
-35 CURLE_SSL_CONNECT_ERROR Wrong when connecting with SSL.
-36 CURLE_BAD_DOWNLOAD_RESUME Could not resume download.
-37 CURLE_FILE_COULDNT_READ_FILE
-38 CURLE_LDAP_CANNOT_BIND
-39 CURLE_LDAP_SEARCH_FAILED
-41 CURLE_FUNCTION_NOT_FOUND

252

-42 CURLE_ABORTED_BY_CALLBACK
-43 CURLE_BAD_FUNCTION_ARGUMENT
-45 CURLE_INTERFACE_FAILED CURLOPT_INTERFACE failed.
-47 CURLE_TOO_MANY_REDIRECTS Catch endless re-direct loops.
-48 CURLE_UNKNOWN_TELNET_OPTION User specified an unknown option.
-49 CURLE_TELNET_OPTION_SYNTAX Malformed telnet option.
-51 CURLE_PEER_FAILED_VERIFICATION Peer's certificate or fingerprint wasn't verified correctly.
-52 CURLE_GOT_NOTHING When this is a specific error.
-53 CURLE_SSL_ENGINE_NOTFOUND SSL crypto engine not found.
-54 CURLE_SSL_ENGINE_SETFAILED Cannot set SSL crypto engine as default.
-55 CURLE_SEND_ERROR, Failed sending network data.
-56 CURLE_RECV_ERROR Failure in receiving network data.
-58 CURLE_SSL_CERTPROBLEM Problem with the local certificate.
-59 CURLE_SSL_CIPHER Could not use specified cipher.
-60 CURLE_SSL_CACERT Problem with the CA cert (path?)
-61 CURLE_BAD_CONTENT_ENCODING Unrecognized transfer encoding.
-62 CURLE_LDAP_INVALID_URL Invalid LDAP URL.
-63 CURLE_FILESIZE_EXCEEDED, Maximum file size exceeded.
-64 CURLE_USE_SSL_FAILED, Requested FTP SSL level failed.
-65 CURLE_SEND_FAIL_REWIND, Sending the data requires a rewind that failed.
-66 CURLE_SSL_ENGINE_INITFAILED Failed to initialize ENGINE.

-67 CURLE_LOGIN_DENIED User, password, or similar field was not accepted and login
failed .

-68 CURLE_TFTP_NOTFOUND File not found on server.
-69 CURLE_TFTP_PERM Permission problem on server.
-70 CURLE_REMOTE_DISK_FULL Out of disk space on server.
-71 CURLE_TFTP_ILLEGAL Illegal TFTP operation.
-72 CURLE_TFTP_UNKNOWNID Unknown transfer ID.
-73 CURLE_REMOTE_FILE_EXISTS File already exists.
-74 CURLE_TFTP_NOSUCHUSER No such user.
-75 CURLE_CONV_FAILED Conversion failed.
-76 CURLE_CONV_REQD Caller must register conversion callbacks using the following

253

URL_easy_setopt options:
CURLOPT_CONV_FROM_NETWORK_FUNCTION
CURLOPT_CONV_TO_NETWORK_FUNCTION
CURLOPT_CONV_FROM_UTF8_FUNCTION

-77 CURLE_SSL_CACERT_BADFILE Could not load CACERT file, missing or wrong format.
-78 CURLE_REMOTE_FILE_NOT_FOUND Remote file not found.

-79 CURLE_SSH Error from the SSH layer (this is somewhat generic, so the
error message will be important when this occurs).

-80 CURLE_SSL_SHUTDOWN_FAILED Failed to shut down the SSL connection.

The following error codes are generated by the system software, and are outside the range of CURL events:
Status Name Description

-10001 ERROR_CANCELLED The transfer request has been cancelled because the
roUrlTransfer instance is out of scope.

-10002 ERROR_EXCEPTION The callback threw an exception.

• GetObject() As Object: Returns the object associated with the event. Currently, this method can only return

an object created in response to an roUrlTransfer.AsyncGetToObject request.
• GetFailureReason As String: Returns a description of the failure that occurred.
• GetSourceIdentity As Integer: Returns a unique number that can be matched with the value returned by

roUrlTransfer.GetIdentity() to determine where the event came from.
• GetResponseHeaders() As roAssociativeArray: Returns an associative array containing all the headers

returned by the server for appropriate protocols (such as HTTP).
• GetHash() As String: The hash (digest) of the response body, as specified by the response_pipe{hash:}

parameter of the roUrlTransfer.AsyncMethod() method.
• GetPrefix() As String: A number of bytes from the start of the response body. The amount of bytes is

specified with the response_pipe{prefix_capture:} parameter of the roUrlTransfer.AsyncMethod() method.

The ifString interface provides the following:

254

• GetString() As String: Returns the string associated with the event. For transfer-complete
AsyncGetToString(), AsyncPostFromString(), and AsyncPostFromFile() requests, this will be the
actual response body from the server, truncated to 65,536 characters.

The ifSourceIdentity interface provides the following:
• GetSourceIdentity As Integer: Returns a unique number that can be matched with the value returned

by roUrlTransfer.GetIdentity() to determine where this event originated.

255

INPUT/OUTPUT OBJECTS

roCecInterface
This object provides access to the HDMI CEC channel.

Object Creation: The roCecInterface object is created with no parameters.

CreateObject("roCecInterface")

Interfaces: IfCecInterface, ifSetMessagePort

The IfCecInterface interface provides the following:

• SendRawMessage(packet As Object) As Void: Sends a message on the CEC bus. The frame data should
be provided as an roByteArray, with the destination address in the low 4 bits of the first octet. The high 4 bits of the
first octet should be supplied as zero; they will be replaced with the source address.

The ifSetMessagePort interface provides the following:

• SetPort(a As Object)

256

roCecRxFrameEvent, roCecTxCompleteEvent
If an roMessagePort is attached to an roCecInterface instance, it will receive events of type roCecRxFrameEvent and/or
roCecTxCompleteEvent.

roCecRxFrameEvent

Interfaces: ifCecRxFrameEvent

The ifCecRxFrameEvent interface provides the following;

• GetByteArray() As Object: Returns the message data as an roByteArray.

roCecTxFrameEvent

Interfaces: ifCecTxCompleteEvent

The ifCecTxCompleteEvent interface provides the following:

• GetStatusByte() As Integer

The currently defined status codes are described below:

0x00 Transmission successful
0x80 Unable to send, CEC hardware powered down
0x81 Internal CEC error
0x82 Unable to send, CEC line jammed
0x83 Arbitration error

257

0x84 Bit-timing error
0x85 Destination address not acknowledged
0x86 Data byte not acknowledged

258

roChannelManager
You can use this object to manage RF channel scanning and tuning. The roVideoPlayer method also has channel
scanning capabilities.

Object Creation: The roChannelManager object is created with no parameters.

CreateObject("roChannelManager")

Interfaces: ifUserData, ifMessagePort, ifSetMessagePort, ifChannelManager,

The ifUserData interface provides the following:

• SetUserData(user_data As Object): Sets the user data that will be returned when events are raised.
• GetUserData() As Object: Returns the user data that has previously been set via SetUserData(). It will

return Invalid if no data has been set.

The ifMessagePort interface provides the following:

• SetPort(a As Object)

The ifSetMessagePort interface provides the following:

• SetPort(a As Object)

The ifChannelManager interface provides both a Synchronous and Asynchronous API:
Synchronous API

• Scan(parameters As roAssociativeArray) As Boolean: Performs a channel scan on the RF input for
both ATSC and QAM frequencies and builds a channel map based on what it finds. The roChannelManager object

259

stores a list of all channels that are obtained using the CreateChannelDescriptor() method (described below).
The list is cleared on each call to Scan() by default, but this behavior can be overridden.

Each channel takes approximately one second to scan; you can limit the scope of the channel scan with the
following parameters:

o ["ChannelMap"] = "ATSC" or "QAM": Limits the frequency scan to either QAM or ATSC.
o ["ModulationType"] = "QAM64" or "QAM256": Limits the modulation type of the scan to QAM64 or

QAM256.
o ["FirstRfChannel"] = Integer and/or ["LastRfChannel"] = Integer: Limits the scan to the

specified range of channels. The high end of the channel range is an optional parameter.
o ["ChannelStore"] = "DISCARD ALL" or "MERGE": Controls how the script handles previous channel

scan information. The default setting is DISCARD ALL, which clears all channel data prior to scanning. On
the other hand, MERGE overwrites the data only for channels specified in the scan.

• GetChannelCount() As Integer: Returns the number of found channels.
• ClearChannelData() As Boolean: Clears all stored channel scanning data, including that which persists in

the registry. This method also cancels any AsyncScan() calls that are currently running.
• GetCurrentSnr() As Integer: Returns the SNR (in centibels) of the currently tuned channel.
• ExporttoXML() As String: Serializes the contents of RF channels into XML. You can write the XML to a file

that can be used at a later point on the same or other units. See below for an example of XML output.
• ImportFromXML(a As String) As Boolean: Retrieves the RF channel contents stored as XML. The

formatting of the XML is controlled using version tags.
Example

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>

<!DOCTYPE boost_serialization>

<boost_serialization signature="serialization::archive" version="7">

<ChannelList class_id="0" tracking_level="0" version="0">

<ChannelCount>2</ChannelCount>

260

<Channel class_id="1" tracking_level="0" version="0">

 <RfChannel>42</RfChannel>

 <ModulationType>7</ModulationType>

 <SpectralInversion>0</SpectralInversion>

 <MajorChannelNumber>1</MajorChannelNumber>

 <MinorChannelNumber>1</MinorChannelNumber>

</Channel>

<Channel>

 <RfChannel>42</RfChannel>

 <ModulationType>7</ModulationType>

 <SpectralInversion>0</SpectralInversion>

 <MajorChannelNumber>1</MajorChannelNumber>

 <MinorChannelNumber>2</MinorChannelNumber>

</Channel>

</ChannelList>

• EnableScanDebug(filename As String) As Boolean: Allows all scan debugging to be written to a text file.
By default, there is no debug output from a scan. You can close the debug file by passing an empty string.

Example

c=CreateObject("roChannelManager")

c.EnableScanDebug("tmp:/scandebug.txt")

v = CreateObject("roVideoPlayer")

aa = CreateObject("roAssociativeArray")

aa["RfChannel"] = 12

261

aa["VirtualChannel"] = "24.1"

print v.PlayFile(aa)

c.EnableScanDebug("")

• CreateChannelDescriptor(a As Object) As Object: Creates an associative array that can either be
passed to the roVideoPlayer.PlayFile() method (to tune to a channel) or parsed for metadata. The generated
channel object can be based on one of the following:

o Index:

["ChannelIndex"] = 0

o Virtual channel number as a string in an associative array:

["VirtualChannel"] = "12.1"

o Channel name as a string:

["ChannelName"] = "KCBS"

Note: Channels are sorted internally by virtual channel, so you could use a ChannelIndex script to implement
standard channel up/down behavior.

These are the entries generated in the array:

o VirtualChannel

o ChannelName

o CentreFrequency

o ModulationType

o VideoPid

262

o VideoCodec

o AudioPid

o AudioCodec

o SpectralInversion

o ChannelMap

o FirstRfChannel

o LastRfChannel

The last three entries in this array allow you to use the same roArray as a parameter for Scan() and PlayFile().
The first and last RF channel values are set to the same value so that only one RF channel will be scanned. This
kind of scan can be performed at the same time as playing the channel because it doesn’t require retuning.

Example

c=CreateObject("roChannelManager")

aa=CreateObject("roAssociativeArray")

aa["ChannelMap"] = "QAM"

aa["FirstRfChannel"] = 10

aa["LastRfChannel"] = 15

c.Scan(aa)

cinfo = CreateObject("roAssociativeArray")

cinfo["ChannelIndex"] = 0

desc = c.CreateChannelDescriptor(cinfo)

print desc

v = CreateObject("roVideoPlayer")

v.PlayFile(desc)

263

c.Scan(desc)

Asynchronous API

• AsyncScan(parameters As roAssociativeArray) As Boolean: Begins a channel scan on the RF input
and returns the results immediately. Otherwise, the behavior and parameters of this method are identical
to Scan(). When completed or cancelled, AsyncScan() generates an roChannelManagerEvent, which supports
ifUserData and outputs two types of event:

o 0 – Scan Complete: Generated upon the completion of a scan. No extra data is supplied.
o 1 – Scan Progress: Generated upon every tune that is performed during the scan. GetData() returns the

percentage complete of the scan.
• CancelScan() As Boolean: Cancels any asynchronous scans that are currently running. This method does

not generate an roChannelManagerEvent.

Synchronous Example

c = CreateObject("roChannelManager")

' Scan the channels

aa = CreateObject("roAssociativeArray")

aa["ChannelMap"] = "ATSC"

aa["FirstRfChannel"] = 12

aa["LastRfChannel"] = 50

c.Scan(aa)

' Start at the first channel

index = 0

264

cinfo = CreateObject("roAssociativeArray")

cinfo["ChannelIndex"] = index

desc = c.CreateChannelDescriptor(cinfo)

' Play the first channel

v = CreateObject("roVideoPlayer")

v.PlayFile(desc)

' Play the second channel

index = index + 1

cinfo["ChannelIndex"] = index

desc = c.CreateChannelDescriptor(cinfo)

v.PlayFile(desc)

Asynchronous Example

c = CreateObject("roChannelManager")

p = CreateObject("roMessagePort")

c.SetPort(p)

' Scan the channels

aa = CreateObject("roAssociativeArray")

aa["ChannelMap"] = "ATSC"

aa["FirstRfChannel"] = 12

aa["LastRfChannel"] = 50

c.AsyncScan(aa)

265

loop:

 msg = Wait(2000,p)

 if msg = 0 then goto scan_complete

 goto loop

scan_complete:

' Start at the first channel

index = 0

cinfo = CreateObject("roAssociativeArray")

cinfo["ChannelIndex"] = index

desc = c.CreateChannelDescriptor(cinfo)

' Play the first channel

v = CreateObject("roVideoPlayer")

v.PlayFile(desc)

' Rescan the current channel, and update the

desc["ChannelStore"] = MERGE

c.Scan(desc)

266

roControlPort
This object is an improved version of roGpioControlPort. It provides support for the I/O port of the BP200 and BP900 USB
button boards, as well as the on-board I/O port and side buttons on the BrightSign player. It also supports "button-up"
events. The object is used to configure output levels on the I/O connector and monitor inputs. Typically, LEDs and buttons
are attached to the I/O connector on the BrightSign player or the BrightSign Expansion Module.

Object Creation: The roControlPort object is created with a single parameter that specifies the port being used.

CreateObject("roControlPort", port As String)

The port parameter can be one of the following:

• BrightSign: Specifies the onboard DA-15 connector, as well the SVC (GPIO12) and Reset buttons.
• Expander-GPIO: Specifies the DB-25 connector on the BrightSign Expansion Module. If no BrightSign Expansion

module is attached, then object creation will fail and Invalid will be returned.
• Expander-DIP: Specifies the eight DIP switches on the BrightSign Expansion Module. If no BrightSign Expansion

module is attached, then object creation will fail and Invalid will be returned.
Note: Hot-plugging the BrightSign Expansion Module is not supported.
• Touchboard-<n>-GPIO: Retrieves events from the specified BP200/BP900 button board. Events are handled in

the same manner as events from the BrightSign port.
• Touchboard-<n>-LED-SETUP: Sets various LED output options for the specified BP200/BP900 button board.
• Touchboard-<n>-LED: Sets the bits for each button on the specified BP200/BP900 button board. The bits

indicate whether the associated LED should be on or off.
Note: Since multiple BP200/BP900 button boards can be connected to a player simultaneously, the <n> value
specifies the port enumeration of each board. An unspecified enumeration value is synonymous with a button board
with an enumeration value of 0 (e.g. Touchboard-GPIO and Touchboard-0-GPIO are identical).

http://www.brightsign.biz/products/accessories/usb-button-panels/�

267

Interfaces: ifControlPort, ifSetMessagePort

The ifControlPort interface provides the following:

• GetVersion() As String: Returns the version number of the firmware (either the main BrightSign firmware or
the BrightSign Expansion Module firmware) responsible for the control port.

• EnableOutput(pin As Integer) As Boolean: Marks the specified pin as an output. If an Invalid pin number
is passed, False will be returned. If successful, the function returns True. The pin will be driven high or low
depending on the current output state of the pin.

• EnableInput(pin As Integer) As Boolean: Marks the specified pin as an input. If an Invalid pin number is
passed, False will be returned. If successful, the function returns True. The pin will be tri-stated and can be driven
high or low externally.

• GetWholeState() As Integer: Returns the state of all the inputs attached to the control port as bits in an
integer. The individual pins can be checked using binary operations, although it is normally easier to call
IsInputActive() instead.

• IsInputActive(pin As Integer) As Boolean: Returns the state of the specified input pin. If the pin is not
configured as an input, then the result is undefined.

• SetWholeState(state As Integer) As Boolean: Specifies the desired state of all outputs attached to the
control port as bits in an integer. The individual pins can be set using binary operations, although it is normally
easier to call SetOutputState instead.

• GetIdentity() As Integer: Returns the identity value that can be used to associate roControlUp and
roControlDown events with this control port.

• SetOutputState(pin As Integer, level As Boolean) As Boolean: Specifies the desired state of the
specified output pin. If the pin is not configured as an output, the resulting level is undefined. This method can also
be used to configure LED output behavior on BP200/B900 button boards; see the BP200/BP900 Setup section
below for more details.

268

• SetOutputValue(offset As Integer, bit-mask As Integer): Configures the BP200/BP900 button
board when roControlPort object is instantiated with the Touchboard-<n>-LED-SETUP or Touchboard-<n>-
LED parameter. See the BP200/900 Setup section below for more details.

• GetProperties() As roAssociativeArray: Returns an associative array of values related to the attached
BP200/BP900 button board, including hardware, header, and revision. This method can only be used with an
roControlPort instantiated with the Touchboard-<n>-GPIO parameter.

• SetPulseParams(parameters As roAssociativeArray) As Boolean: Specifies a period of time, as well
as the time slices within that period, for pulsing GPIO LED pins. These properties are applied to all GPIO pins. This
method is passed an associative array with the following parameters:

o milliseconds: An integer specifying the time period (in ms) for pulsing
o slices: An integer specifying the number of divisions within the milliseconds time period: For example,

a 500ms time period with slices:2 is divided into two 250ms slices.
• SetPulse(pin As Integer, bit-field As Integer) As Boolean: Sets the off/on bit field for a

particular GPIO pin. Use the slices parameter of the SetPulseParams() method to determine the number of
bits in the bit field. For example, specifying milliseconds:500, slices:2, and a bit field of 10 will cause the
pin to turn on every other 250 millisecond period.

• RemovePulse(pin As Integer) As Boolean: Removes the specified GPIO pin from the set of pins affected
by the pulse.

The ifSetMessagePort interface provides the following:
• SetPort(port As Object): Requests that all events raised on this control port be posted to the specified

message port.

Example: The following code applies timed pulses to a set of GPIO pins.

' set up pin 2 and 3 to flash at 2Hz (i.e. on & off twice in a second) in an alternating

' fashion.

269

gpioPort = CreateObject("roControlPort", "BrightSign")

gpioPort.EnableOutput(2)

gpioPort.SetOutputState(2, true)

gpioPort.EnableOutput(3)

gpioPort.SetOutputState(3, true)

' set up pulse to have two time slices of 250ms each.

gpioPort.SetPulseParams({ milliseconds: 500, slices: 2 })

' pin 2 will have slice 1 on and slice 2 off.

gpioPort.SetPulse(2, &h01)

' pin 3 will have the reverse of pin 2.

gpioPort.SetPulse(3, &h02)

' wait for a bit.

sleep(10000)

' stop pulsing on pin 2.

gpioPort.RemovePulse(2)

270

BP200/BP900 Setup
To send a configuration to the BP200/BP900 button board, instantiate roControlPort with the Touchboard-<n>-LED-
SETUP parameter and call the SetOuputValue() method. This method accepts two integers: the first integer specifies
one of three command types (offsets); the second integer is a bit field consisting of 32 bits.

• Offset 0: Configures the button board using a bit field that is split into four bytes of eight bits each. Each byte is a
separate part of the configuration. In the script, these bytes need to be listed from right to left in hex value (i.e. Byte
1 + Byte 2 + Byte 3 + Byte 4).

o Byte 1: Specifies the configuration type for the button board. Currently, the only configuration type is for LED
output, which is specified with the value &hA0.

o Byte 2: The button number(s) that will be configured. Buttons are numbered beginning from 1. The value is
set to 0 (&h00) if this command is not required.

o Byte 3: The LED bit-field configuration. This value specifies how many on/off bits should be used (up to 32
bits) when SetOutputValue() is called on a Touchboard-<n>-LED instance (see the BP200/BP900
LED Output section below for details). Set the value to 0 (&h00) if this command is not required (the bit field
will be set to eight bits by default).

o Byte 4: This value is currently always set to 0 (&h00).
• Offset 1: Disables buttons on the button board according to values in the bit field. Each button is disabled

individually by setting bits 0-10: For example, passing the hex value &h00000008 will disable button 4 only.
• Offset 2: Disables LEDs on the button board according to values in the bit field. Each LED is disabled individually

by setting bits 0-10: For example, passing the hex value &h00000080 will disable the LED on button 8 only.
Note: Disabling a button LED will not automatically disable the button itself (and vice-versa). To disable both the
button and the LED, make separate SetOutputValue() calls for Offset 1 and Offset 2.

BP200/BP900 LED Output
To control the behavior of individual button LEDs, instantiate roControlPort with the Touchboard-<n>-LED parameter,
then pass per-LED bit fields to the SetOutputValue() method. This method accepts two integers: the first integer

271

specifies the button number (0-11), while the second integer uses a bit field to specify the on/off behavior of the button
LED. The size of the bit field (up to 32 bits) is determined with the Offset 0 – Byte 3 value described in the section above.

Each bit specifies the on/off behavior of a single cycle, and the BP200/BP900 button boards run at approximately 11Hz.
For example, if you want an LED to cycle on every other second, you would set the Offset 0 – Byte 3 value to &h16 (22
bits) and the bit field itself to &h3FF800 (0000000000011111111111).

Example: The following code sets a BP900 to “twinkle” by turning off each button LED at a different point in the cycle.

led=CreateObject("roControlPort", "TouchBoard-0-LED")

led_setup=CreateObject("roControlPort", "TouchBoard-0-LED-SETUP")

led_setup.SetOutputValue(0, &h000B00A0)

led.SetOutputValue(0, &h07fe)

led.SetOutputValue(1, &h07fd)

led.SetOutputValue(2, &h07fb)

led.SetOutputValue(3, &h07f7)

led.SetOutputValue(4, &h07ef)

led.SetOutputValue(5, &h07df)

led.SetOutputValue(6, &h07bf)

led.SetOutputValue(7, &h077f)

led.SetOutputValue(8, &h06ff)

led.SetOutputValue(9, &h05ff)

led.SetOutputValue(10, &h03ff)

272

roControlUp, roControlDown
These objects are posted by the control port to the configured message port when inputs change state. The roControlUp
and roControlDown objects are not normally created directly.

An roControlDown event is posted when the input level goes from high to low. An roControlUp event is posted when the
input level goes from low to high.

Interfaces: ifInt, ifSourceIdentity

The ifInt interface provides the following:

• GetInt() As Integer: Retrieves the pin number associated with the event.

The ifSourceIdentity interface provides the following:
• GetSourceIdentity() As Integer: Retrieves the identity value that can be used to associate events with the

source roControlPort instance.

273

roGpioControlPort, roGpioButton
Note: New scripts should use roControlPort instead of roGpioControlPort.

roGpioControlPort
This object is used to control and wait for events on the BrightSign generic DB15 control port. Typically, LEDs or buttons
are connected to the DB15 / DB25 port. Turning on a GPIO output changes the voltage on the GPIO port to 3.3V. Turning
off a GPIO output changes the voltage on the GPIO port to 0V.

The GPIO ports are bidirectional and must be programmed as either inputs or outputs. The IDs range from 0–7. The
SetWholeState() method will overwrite any prior output settings. The SetOutputState() takes an output ID (1, 2, or
6, for example). The SetWholeState() method takes a mask (for example, SetWholeState(2^1 + 2^2) will set
IDs 1 and 2).

Interfaces: ifSetMessagePort, ifGpioControlPort

The ifSetMessagePort interface provides the following:

• SetPort(obj As Object) As Void

The ifGpioControlPort interface provides the following:
• IsInputActive(input_id As Integer) As Boolean

• GetWholeState() As Integer

• SetOutputState(output_id As Integer, onState As Boolean) As Void

• SetWholeState(on_state As Integer) As Void

• EnableInput(input_id As Integer) As Boolean

• EnableOutput(output_id As Integer) As Boolean

274

roGpioButton

Interfaces: ifInt, ifIntOps

The ifInt interface contains the input ID listed above and provides the following:

• GetInt() As Integer

• SetInt(a As Integer)

The ifIntOps interface provides the following:
• ToStr() As String

275

roIRReceiver
This object supports receiving arbitrary Infrared remote control codes using the NEC and RC5 protocols.

Object Creation: The roIRReceiver object is created with an associative array specifying the following:

• source: A string value indicating the source of the input.
o "IR-in": The 3.5mm IR input/output connector (available on 4Kx42 and XDx32 models)
o "GPIO": Pin 1 of the GPIO connector
o "Iguana": The Iguanaworks IR transceiver. This source can support both NEC and RC5 encodings

simultaneously.
• encodings: An array indicating the required encodings.

o "NEC"
o "RC5" (supported on the Iguanaworks IR transceiver only)

CreateObject("roIRReceiver", config As roAssociativeArray)

NEC codes are expressed in 24 bits:
• Bits 0-7: Button code
• Bits 8-23: Manufacturer code
Note: If the manufacturer code is zero, then the code is considered to be intended for the Roku SoundBridge remote
control.

The roIRReceiver object can generate the following events:

• roIRDownEvent: Generates when a button is pressed.
• roIRRepeatEvent: Generates when a button repeats.
• roIRUpEvent (Iguanaworks IR transceiver only): Generates when a button is released.

http://iguanaworks.net/�

276

Interfaces: ifUserData, ifMessagePort

The ifUserData interface provides the following:

• SetUserData(user_data As Object): Sets the user data that will be returned when events are raised.
• GetUserData() As Object: Returns the user data that has previously been set via SetUserData. It will return

Invalid if no data has been set.

The ifMessagePort interface provides the following:

• SetPort(a As Object): Specifies the port that will receive events generated by the roIRReceiver instance.

277

roIRDownEvent, roIRRepeatEvent, roIRUpEvent
An IR event object is generated when an IR button input (button press, button repeat, button release) is received by the
roIRReceiver object. Use these objects to retrieve the message body of the IR input.

Note: The roIRUpEvent object is generated with the Iguanaworks IR transceiver only.

These event objects provide the following:

• GetCode() As Integer: Returns the IR code received by the roIRReceiver instance.
• SetCode(a As Integer): Overrides the IR code received by the roIRReceiver instance, replacing it with the

specified binary code.

Interfaces: ifUserData, ifReceivedEvent

The ifUserData interface provides the following:

• SetUserData(user_data As Object): Sets the user data that will be returned when events are raised.
• GetUserData() As Object: Returns the user data that has previously been set via SetUserData(). It will

return Invalid if no data has been set.

The ifReceivedEvent interface provides the following:

• GetEncoding() As String: Returns the encodings setting of the roIRReceiver instance. This setting can be
one of the following strings:

o "NEC"
o "RC5" (supported on the Iguanaworks IR transceiver only)

278

roIRTransmitter
This object supports sending arbitrary remote control Infrared remote control codes using the NEC, RC5, or PHC (Pronto
Hex Controls) protocols.

Object Creation: The roIRTransmitter is created with an associate array specifying the following:

• destination: A string value indicating the connector that will be used to output the signal.
o "IR-out": The 3.5mm IR input connector (available on XD players) or 3.5mm IR input/output connector

(available on 4Kx42 and XDx32 models)
o "Iguana": The Iguanaworks IR transceiver

Note: System software will not prevent you from generating both an roIRTransmitter instance set to IR-out and an
roIRReceiver instance set to IR-in (i.e. configuring the 3.5mm IR connector for input and output at the same time).
However, input/output performance will not be reliable.

CreateObject("roIRTransmitter", config as roAssociativeArray)

Interfaces: ifIRTransmitter

The ifIRTransmitter interface provides the following:

• GetFailureReason() As String

• Send(protocol As String, code As Dynamic) As Boolean: Sends the specified code using the output
destination set during object creation. The system currently supports two IR transmission protocols: "NEC" and
"PHC" (Pronto Hex Code). This method returns True if the code was successfully transmitted, but there is no way
to determine from BrightScript if the controlled device actually received it.

http://iguanaworks.net/�

279

roIRRemote
This object supports receiving and transmitting arbitrary Infrared remote control codes using the NEC protocol. You can
also use this object to send PHC (Pronto Hex Code) commands. The best way to determine the required send values is to
capture the codes received by roIRRemote when the remote buttons of the device are pressed and then send the same
codes.

Important: The roIRRemote object cannot be used to receive input over the 3.5mm IR port on the 4Kx42 and XDx32
series—use the roIRReceiver object instead.

NEC codes are expressed in 24 bits:

• Bits 0-7: Button code
• Bits 8-23: Manufacturer code
Note: If the manufacturer code is zero, then the code is considered to be intended for the Roku SoundBridge remote
control.

Interfaces: ifSetMessagePort, ifIRRemote.

The ifSetMessagePort interface provides the following:

• SetPort(message_port_object As Object) As Void

The ifIRRemote interface provides the following:
• Send(protocol as String, code as Dynamic) As Boolean: Sends the specified code using the IR

blaster. The system currently supports two IR transmission protocols: "NEC" and "PHC" (Pronto Hex Code). This
method returns True if the code was successfully transmitted, but there is no way to determine from BrightScript if
the controlled device actually received it.

280

Pronto Hex Format
Raw captures of Pronto Hex commands will likely not work with the inbuilt IR blaster, though they should work
with Iguanaworks IR transceivers. This is a result of the trailing off periods, which are too long to be ecoded properly.
Changing the off periods to all zeros ("0000") will fix this issue.

Example: The following example sends an "ON" command to a Panasonic television using a single string of Pronto Hex
Code. You can also provide Pronto Hex Code as an roArray of hex values, which results in less work for the script engine.

ir = CreateObject("roIRRemote")

 pronto_hex_Panasonic_on_str = " 0000 0071 0000 0032 0080 003F 0010 0010 0010 0030

0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010

0010 0010 0010 0010 0010 0030 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010

0010 0010 0010 0010 0010 0010 0010 0030 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010

0010 0010 0010 0010 0010 0010 0010 0010 0010 0030 0010 0030 0010 0030 0010 0030 0010 0030

0010 0010 0010 0010 0010 0010 0010 0030 0010 0030 0010 0030 0010 0030 0010 0030 0010 0010

0010 0030 0010 0000"

 ir.Send("PHC", pronto_hex_lg_on_str)

http://iguanaworks.net/�

281

roIRRemotePress
Messages of the type roIRRemotePress are generated upon key presses from a Roku Soundbridge remote.

Interfaces: ifInt, ifIntOps

The ifInt interface contains keycode and provides the following:

• GetInt() As Integer
• SetInt(a As Integer)

The ifIntOps interface provides the following:

• ToStr() As String

For the Roku SoundBridge remote control, the Integer returned can have one of the following values:
West 0

East 1

North 2

South 3

Select 4

Exit 5

Power 6

Menu 7

Search 8

Play 9

Next 10

Previous 11

Pause 12

282

Add 13

Shuffle 14

Repeat 15

Volume up 16

Volume down 17

Brightness 18

283

roKeyboard, roKeyboardPress

roKeyboard
This object is used to wait for events from a USB keyboard. It can also be used to configure the localization of the
keyboard.

Interfaces: ifSetMessagePort, ifKeyboardConfig

The ifSetMessagePort interface provides the following:

• SetPort(port As Object) As Void

The ifKeyboardConfig interface provides the following:

• SetLayout(layout As String) As Boolean: Specifies the localized layout for the attached USB keyboard.
This setting takes effect immediately and persists in the registry after a reboot. The following table lists valid
keymap parameters (players are set to us by default):

af Afghanistan es Spain kh Cambodia pk Pakistan

al Albania et Ethiopia kr Korea, Republic of pl Poland

am Armenia fi Finland kz Kazakhstan pt Portugal

at Austria fo Faroe Islands la Laos ro Romania

az Azerbaijan fr France lk Sri Lanka rs Serbia

ba Bosnia and Herzegovina gb United Kingdom lt Lithuania ru Russia

bd Bangladesh ge Georgia lv Latvia se Sweden

be Belgium gh Ghana ma Morocco si Slovenia

bg Bulgaria gn Guinea md Moldova sk Slovakia

br Brazil gr Greece me Montenegro sn Senegal

284

bt Bhutan hr Croatia mk Macedonia sy Syria

bw Botswana hu Hungary ml Mali th Thailand

by Belarus ie Ireland mm Myanmar tj Tajikistan

ca Canada il Israel mn Mongolia tm Turkmenistan

cd Congo (DRC) in India mt Macao tr Turkey

ch Switzerland iq Iraq mv Maldives tw Taiwan

cm Cameroon ir Iran ng Nigeria tz Tanzania

cn China is Iceland nl Netherlands ua Ukraine

cz Czech Republic it Italy no Norway us United States

de Germany jp Japan np Nepal uz Uzbekistan

dk Denmark ke Kenya pc Pitcairn vn Vietnam

ee Estonia kg Kyrgyzstan ph Philippines za South Africa

roKeyboardPress
This object is a keyboard event resulting from the user pressing a key on a USB keyboard. The int value is equivalent to
the ASCII code of the key that was pressed.

Interfaces: ifInt, ifIntOps

The ifInt interface contains the ASCII value of key presses and provides the following:

• GetInt() As Integer
• SetInt(a As Integer)

The ifIntOps interface provides the following:
• ToStr() As String

285

The rotINT32 returned can have one of the following values:

Letter Keys
Number

Keys
Function

Keys Misc Keys Special Keys

A - 97 R - 114 0 - 48 F1 - 32826 Del - 127 "-" 45 : 58

B - 98 S - 115 1 - 49 F2 - 32827 Backspace - 8 "=" 61 " 34

C - 99 T - 116 2 - 50 F3 - 32828 Tab - 9 \ 92 < 60

D - 100 U - 117 3 - 51 F4 - 32829 Enter - 13 ` 96 > 62

E - 101 V - 118 4 - 52 F5 - 32830 Print Scrn - 32838 [91 ? 63

F - 102 W - 119 5 - 53 F6 - 32831 Scrl Lock - 32839] 93 ! 33

G - 103 X - 120 6 - 54 F7 - 32832 Pause/Brk - 32840 ; 59 @ 64

H - 104 Y - 121 7 - 55 F8 - 32833 INS - 32841 " ' " 39 # 35

I - 105 Z - 122 8 - 56 F9 - 32834 Home - 32842 , 44 $ 36

J - 106 9 - 57 F11 - 32836 Page Up - 32843 . 46 % 37

K - 107 F12 - 32837 Page Down - 32846 / 47 ^ 94

L - 108 End - 32845 _ 95 & 38

M - 109 Caps - 32811 "+" 43 * 42

N - 110 Left Arrow - 32848 | 124 (40

O - 111 Right Arrow - 32847 ~ 126) 41

P - 112 Up Arrow - 32850 { 123

Q - 113 Down Arrow - 32849 } 125

286

roMessagePort
A message port is the destination where messages (events) are sent. See the Event Loops section for more details. You
do not call these functions directly when using BrightScript. Instead, use the "Wait" BrightScript statement (see
the BrightScript Reference Guide for more details).

Interfaces: ifMessagePort, ifEnum

The ifMessagePort interface provides the following:

• GetMessage() As Object

• WaitMessage(timeout As Integer) As Object

• PostMessage(msg As Object) As Void

• PeekMessage() As Object

• SetWatchdogTimeout(seconds As Integer) As Integer: Enables a watchdog timeout on the
roMessagePort instance. The watchdog on roMessagePort is disabled by default. Passing a positive integer to this
method instructs the watchdog to crash and reboot the player if GetMessage() or WaitMessage() does not
return after the specified number of seconds. Passing zero to this method disables the watchdog again.

Note: The watchdog timeout will not trigger while waiting on the BrightScript debugger prompt.
• DeferWatchdog(a As Integer): Defers the watchdog timeout set by the SetWatchdogTimeout() method.

Passing an integer to this method defers the timeout for the specified number of seconds.
• DeferWatchdog(): Defers the watchdog timeout by the amount of seconds set in the SetWatchdogTimeout()

method.
Note: Calls to either DeferWatchdog() method cannot cause the watchdog to trigger earlier than it already will. For
example, calling DeferWatchdog(100) followed by DeferWatchdog(10) will still cause the watchdog to trigger
after 100 seconds.

http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting�

287

The ifEnum interface provides the following:
• Reset(): Resets the position to the first element of enumeration.
• Next() As Dynamic: Returns the typed value at the current position and increment position.
• IsNext() As Boolean: Returns True if there is a next element.
• IsEmpty() As Boolean: Returns True if there is not a next element.

288

roSequenceMatcher
This object is used to send roSequenceMatchEvent events when the specified byte sequence patterns are matched.
Once a pattern has been matched and the event has been posted, all contributing bytes are discarded. As a result, if one
pattern is a prefix of another pattern, then the second, longer pattern will never be matched by the object.

Interfaces: ifStreamReceiveObserver, ifSequenceMatcher

The ifSequenceMatcher interface provides the following:

• SetMessagePort(a As Object): Specifies the message port where roSequenceMatchEvent objects will be
posted.

• Add(pattern As Object, user_data As Object) As Boolean: Adds a pattern to be matched by the
roSequenceMatcher object instance. The pattern should be specified as an object that is convertible to a byte
sequence (e.g. roByteArray, roString). For the user data, pass the object that should be returned if the specified
pattern is matched.

Example

Function FromHex(hex as String) as Object

 bytes = CreateObject("roByteArray")

 bytes.FromHexString(hex)

 return bytes

End Function

Sub Main()

 serial = CreateObject("roSerialPort", 1, 115200)

 mp = CreateObject("roMessagePort")

289

 button1_seq = FromHex("080a01040001e000")

 button2_seq = FromHex("080e01040001e000")

 matcher = CreateObject("roSequenceMatcher")

 matcher.SetMessagePort(mp)

 matcher.Add(button1_seq, { name: "button1" })

 matcher.Add(button2_seq, { name: "button2" })

 matcher.Add("flibbet", { name: "flibbet" })

 matcher.Add("flobbet", { name: "flobbet" })

 if not serial.SetMatcher(matcher) then

 stop

 end if

 finished = false

 while not finished

 ev = mp.WaitMessage(10000)

 if ev = invalid then

 finished = true

 else if type(ev) = "roSequenceMatchEvent" then

 print "Got button: "; ev.GetUserData().name

 else

 print "Unexpected event: "; type(ev)

 end if

 end while

End Sub

290

291

roSequenceMatchEvent
This object is generated whenever roSequenceMatcher matches a specified byte sequence pattern.

Interfaces: ifUserData

The ifUserData interface provides the following:

• SetUserData(user_data As Object): Sets the user data that will be returned when events are raised.
• GetUserData() As Object: Returns the user data that has previously been set via SetUserData(). It will

return Invalid if no data has been set.

292

roSerialPort
This object controls the RS-232 serial port, allowing you to receive input and send responses.

Object Creation: The roSerialPort object is created with two parameters.

CreateObject(roSerialPort, port As Integer, baud_rate As Integer)

• port: The port enumeration of the serial device. Most standard RS-232 serial devices enumerate on port 0. If you
are connecting a USB-serial device (such as a GPS receiver), it will enumerate on port 2.

• baud_rate: The baud rate for serial communication. The serial port supports the following baud rates: 1800, 2400,
4800, 9600, 19200, 38400, 57600, 115200.

roSerialPort sends the following event types:

• roStreamLineEvent: The line event is generated whenever the end of line string set using SetEol is found and
contains a String for the whole line. This object implements the ifString and ifUserData interfaces.

• roStreamByteEvent: The byte event is generated on every byte received. This object implements the ifInt and
ifUserData interfaces.

Interfaces: ifStreamSend, ifStreamReceive, ifSerialControl, ifUserData

The ifStreamSend interface provides the following:

• SetSendEol(eol_sequence As String) As Void: Sets the EOL sequence when writing to the stream.
• SendByte(byte As Integer) As Void: Writes the specified byte to the stream.
• SendLine(string As String) As Void: Writes the specified characters to the stream followed by the

current EOL sequence.
• SendBlock(a As Dynamic) As Void: Writes the specified characters to the stream. This method can support

either a string or an roByteArray. If the block is a string, any null bytes will terminate the block.

293

• Flush()

The ifStreamReceive interface provides the following:
• SetLineEventPort(port As Object) As Void

• SetByteEventPort(port As Object) As Void

• SetReceiveEol(a As String)

• SetMatcher(matcher As Object) As Boolean: Instructs the stream to use the specified matcher. This
object returns True if successful. Pass Invalid to this method to stop using the specified matcher.

The ifSerialControl interface provides the following:

• SetBaudRate(baud_rate As Integer) As Boolean: Sets the baud rate of the device. The supported baud
rates are as follows: 50, 75, 110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800, 9600, 19200, 38400, 57600,
115200, 230400.

• SetMode(mode As String) As Boolean: Sets the serial mode in "8N1" syntax. The first character is the
number of data bits. It can be either 5, 6, 7, or 8. The second number is the parity. It can be "N"one, "O"dd, or
"E"ven. The third is the number of stop bits. It can be 1 or 2.

• SetEcho(enable As Boolean) As Boolean: Enables or disables serial echo. It returns True on success and
False on failure.

• SetEol(a As String)
• SetInverted(inverted As Boolean) As Boolean: Inverts the signals on the player serial port. This allows

the player to communicate with most PCs that use -12v to 12v signaling. Passing True to the method enables
inversion, whereas passing False disables it.

• SendBreak(duration_in_ms As Integer) as Boolean: Sends a serial break or sets the serial break
condition. This method returns True upon success and False upon failure.

a. duration_in_ms = -1: Sends a continuous break.
b. duration_in_ms = 0: Clears the break state.

294

c. duration_in_ms >= 100: Sets the break condition for the specified period of milliseconds (note that this
integer is only accurate to the tenth of a second).

The ifUserData interface provides the following:

• SetUserData(user_data As Object): Sets the user data that will be returned when events are raised.
• GetUserData() As Object: Returns the user data that has previously been set via SetUserData(). It will

return Invalid if no data has been set.

Example: This code waits for a serial event and echoes the input received on the serial port to the shell.

serial = CreateObject("roSerialPort", 0, 9600)

p = CreateObject("roMessagePort")

serial.SetLineEventPort(p)

serial_only:

msg = Wait(0,p) ' Wait forever for a message.

if(type(msg) <> "roStreamLineEvent") goto serial_only 'Accept serial messages only.

serial.SendLine(msg) ' Echo the message back to serial.

295

SYSTEM OBJECTS

roDeviceInfo
This object provides information about the device hardware, firmware, and features.

Interfaces: ifDeviceInfo

The ifDeviceInfo interface provides the following:

• GetModel() As String: Returns the model name for the BrightSign device running the script as a string (for
example, "HD1020" or "XD230").

• GetVersion() As String: Returns the version number of BrightSign firmware running on the device (for
example, "4.0.13").

• GetVersionNumber() As Integer: Returns the version number of the BrightSign firmware running on the
device in the more comparable numeric form of (major*65536 + minor*256 + build).

• GetBootVersion() As String: Returns the version number of the BrightSign boot firmware, also known as
"safe mode", as a string (for example, "1.0.4").

• GetBootVersionNumber() As Integer: Returns the version number of the BrightSign boot firmware, also
known as "safe mode," in the more comparable numeric form of (major*65536 + minor*256 + build).

• GetDeviceUptime() As Integer: Returns the number of seconds that the device has been running since the
last power cycle or reboot.

• GetDeviceUniqueId() As String: Returns an identifier that, if not an empty string, is unique to the unit
running the script.

• GetFamily() As String: Returns a single string that indicates the family to which the device belongs. A device
family is a set of models that are all capable of running the same firmware.

• GetDeviceLifetime() As Integer

296

• HasFeature(feature As String) As Boolean: Returns True if the player feature, which is passed as a
case-insensitive string parameter, is present on the current device and firmware. The possible features that can be
queried from the script are listed below:
Note: If you pass a parameter other than one of those listed below, it may return False even if the feature is
available on the hardware and firmware.

o "brightscript1": BrightScript Version 1
o "brightscript2": BrightScript Version 2
o "networking": Any form of networking capability; there may be no network currently available.
o "hdmi"

o "component video"

o "vga"

o "audio1": The first audio output
o "audio2": A second audio output
o "audio3": A third audio output
o "ethernet"

o "usb"

o "serial port 0": The first RS-232 serial port
o "serial port 1": A second RS-232 serial port
o "serial port 2": A third RS-232 serial port
o "5v serial"

o "gpio connector"

o "gpio12 button"

o "reset button"

o "rtc"

o "registry"

o "nand storage"

o "sd": SD or SDHC

297

o "sdhc": SDHC only

Example:

di = CreateObject("roDeviceInfo")

print di.GetModel()

print di.GetVersion(), di.GetVersionNumber()

print di.GetBootVersion(), di.GetBootVersionNumber()

print di.GetDeviceUptime(), di.GetDeviceBootCount()

On a particular system, this generates:

HD1010

3.2.41 197161

3.2.28 197148

 14353 3129

298

roResourceManager
The roResourceManager is used for managing strings in multiple languages.

Object creation: The roResourceManager object is created with a single filename parameter that specifies the name of
the file that contains all of the localized resource strings required by the user. This file must be in UTF-8 format.

CreateObject("roResourceManager", filename As String)

Interfaces: ifResourceManager

The interface ifResourceManager provides the following:

• SetLanguage(language_identifier As String) As Boolean: Instructs the roResourceManager object
to use the specified language. False is returned if there are no resources associated with the specified language.

• GetResource(resource_identifier As String) As String: Returns the resource string in the current
language for a given resource identifier.

• GetFailureReason() As String: Yields additional useful information if a function return indicates an error.
• GetLanguage() As String

At present, roResourceManager is primarily used for localizing the roClockWidget. The resource file passed in during
creation has the following format for each string entry:

[RESOURCE_IDENTIFIER_NAME_GOES_HERE]

eng "Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec"

ger "Jan|Feb|Mär|Apr|Mai|Jun|Jul|Aug|Sep|Okt|Nov|Dez"

spa "Ene|Feb|Mar|Abr|May|Jun|Jul|Ago|Sep|Oct|Nov|Dic"

fre "Jan|Fév|Mar|Avr|Mai|Jun|Jul|Aou|Sep|Oct|Nov|Déc"

299

ita "Gen|Feb|Mar|Apr|Mag|Giu|Lug|Ago|Set|Ott|Nov|Dic"

dut "Jan|Feb|Mar|Apr|Mei|Jun|Jul|Aug|Sep|Okt|Nov|Dec"

swe "Jan|Feb|Mar|Apr|Maj|Jun|Jul|Aug|Sep|Okt|Nov|Dec"

The name in square brackets is the resource identifier. Each line after it is a language identifier followed by the resource
string. Multiple roResourceManager objects can be created. A default "resources.txt" file, which contains a range of
internationalization for the clock widget, is available from the BrightSign website.

http://brightsign.zendesk.com/entries/314637-brightsign-downloads�

300

roSystemLog
This object enables the application to receive events that are intended for reporting errors and trends, rather than for
triggering a response to a user action.

roSystemLog requires specific design patterns in your BrightScript application:

• Use one roMessagePort throughout the application (instead of creating a new roMessagePort for each screen).
• Create one roSystemLog instance at startup that remains for the entire lifetime of the application.
• Pass the global roMessagePort mentioned above to SetMessagePort() on the roSystemLog component.
• Enable the desired log types using EnableType().

This object is created with no parameters:

CreateObject("roSystemLog")

Interfaces: ifStreamSend, ifSystemLog

The ifStreamSend interface provides the following:

• SetSendEol(eol_sequence As String) As Void: Sets the EOL sequence when writing to the stream.
• SendByte(byte As Integer) As Void: Writes the specified byte to the stream.
• SendLine(string As String) As Void: Writes the specified characters to the stream followed by the

current EOL sequence.
• SendBlock(a As Dynamic) As Void: Writes the specified characters to the stream. This method can support

either a string or an roByteArray. If the block is a string, any null bytes will terminate the block.
• Flush()

301

The ifSystemLog interface provides the following:
• ReadLog() As Object

302

DATE AND TIME OBJECTS

roDateTime
This object is used to represent an instant in time.

Interfaces: ifDateTime, ifString

The ifDateTime interface provides the following:

• GetDayOfWeek() As Integer

• GetDay() As Integer

• GetMonth() As Integer

• GetYear() As Integer

• GetHour() As Integer

• GetMinute() As Integer

• GetSecond() As Integer

• GetMillisecond() As Integer

• SetDay(day As Integer) As Void

• SetMonth(month As Integer) As Void

• SetYear(year As Integer) As Void

• SetHour(hour As Integer) As Void

• SetMinute(minute As Integer) As Void

• SetSecond(second As Integer) As Void

• SetMillisecond(millisecond As Integer) As Void

• AddSeconds(seconds As Integer) As Void

• SubtractSeconds(seconds As Integer) As Void

303

• AddMilliseconds(milliseconds As Integer) As Void

• SubtractMilliseconds(milliseconds As Integer) As Void

• Normalize() As Boolean: Checks that all the fields supplied are correct. This function fails if the values are out
of bounds.

• ToIsoString() As String: Returns the current roDateTime value as an ISO-8601 basic formatted string.
Hyphens for date and colons for time are omitted, and a comma is used to separate seconds from milliseconds:
For example, the ISO-8601 standard "2014-05-29T12:30:00.100" would be formatted as "20140529T123000,100".

• FromIsoString(date-time As String) As Boolean: Sets the value of the roDateTime object using an
ISO-8601 basic formatted string. Hyphens for date and colons for time are omitted, and either a period or comma
can be used to separate seconds from milliseconds: The ISO-8601 standard "2014-05-29T12:30:00.100" could, for
example, be formatted as either "20140529T123000,100" or "20140529T123000.100". This method will return
False (indicating that it has not affected changes to the roDateTime object) if the string is formatted incorrectly or if
the date passed is outside the range of January 1, 1970 and December 31, 2100.

• ToSecondsSinceEpoch() As Integer: Returns the number of seconds that have elapsed since midnight on
January 1, 1970, as represented by the roDateTime instance (not the system time).

• FromSecondsSinceEpoch(seconds As Integer) As Boolean: Populates the roDateTime instance with
the specified number of seconds since midnight on January 1, 1970.

• GetString() As String

The ifString interface provides the following:

• GetString() As String

A new object is, at the time of its creation, represented by zero seconds. When used via the ifString interface, ifDateTime
will always use the sortable date format "YYYY-MM-DD hh:mm:ss".

304

roSystemTime
This object provides the ability to read and write the time stored in the real-time clock (RTC). It can also be used to read
and write the time-zone setting.

Note: Dates up to January 1, 2038 are supported.

Interfaces: ifSystemTime.

The ifSystemTime interface provides the following:

• GetLocalDateTime() As roDateTime: Returns the current time from the RTC (modulated using the current
time zone) as an roDateTime instance.

• GetUtcDateTime() As roDateTime: Returns the current time from the RTC (modulated using the UTC/GMT
time zone) as an roDateTime instance.

• GetZoneDateTime(timezone_name As String) As Object: Returns the current time from the RTC
(modulated using the specified time zone) as an roDateTime instance. Supported time zones are listed below.

• SetLocalDateTime(local_DateTime As roDateTime) As Boolean: Specifies a new time for the RTC
using the current time zone.

• SetUtcDateTime(utc_DateTime As roDateTime) As Boolean: Specifies a new time for the RTC using
the UTC/GMT time zone.

• GetTimeZone() As String: Returns the current time-zone setting of the player. A POSIX: value is appended
to the beginning of the string if the time zone has been set using the POSIX format.

• SetTimeZone(zone_name As String) As Boolean: Specifies a new time-zone setting for the player
(supported time zones are listed below). Alternatively, a POSIX formatted time zone can be applied by appending a
POSIX: value to the beginning of the string.

• IsValid() As Boolean: Returns True if the system time is set to a valid value. The time can be set from the
RTC or with NTP.

305

Example: The following code specifies a POSIX-formatted time zone:

t = CreateObject("roSystemTime")

t.SetTimeZone("POSIX:GMT-0BST-1,M3.5.0/1:00,M10.5.0/2:00")

The following are supported system time zones (this list does not apply to POSIX-formatted time zones):

• EST: US Eastern Time
• CST: US Central Time
• MST: US Mountain Time
• PST: US Pacific Time
• AKST: Alaska Time
• HST: Hawaii-Aleutian Time with no Daylight Savings (Hawaii)
• HST1: Hawaii-Aleutian Time with Daylight Saving
• MST1: US MT without Daylight Saving Time (Arizona)
• EST1: US ET without Daylight Saving Time (East Indiana)
• AST: Atlantic Time
• CST2: Mexico (Mexico City)
• MST2: Mexico (Chihuahua)
• PST2: Mexico (Tijuana)
• BRT: Brazil Time (Sao Paulo)
• NST: Newfoundland Time
• AZOT: Azores Time
• GMTBST: London/Dublin Time
• WET: Western European Time
• CET: Central European Time
• EET: Eastern European Time
• MSK: Moscow Time

306

• SAMT: Delta Time Zone (Samara)
• YEKT: Echo Time Zone (Yekaterinburg)
• IST: Indian Standard Time
• NPT: Nepal Time
• OMST: Foxtrot Time Zone (Omsk)
• JST: Japanese Standard Time
• CXT: Christmas Island Time (Australia)
• AWST: Australian Western Time
• AWST1: Australian Western Time without Daylight Saving Time
• ACST: Australian Central Standard Time (CST) with Daylight Saving Time
• ACST1: Darwin, Australia/Darwin, and Australian Central Standard Time (CST) without Daylight Saving Time
• AEST: Australian Eastern Time with Daylight Saving Time
• AEST1: Australian Eastern Time without Daylight Saving Time (Brisbane)
• NFT: Norfolk (Island) Time (Australia)
• NZST: New Zealand Time (Auckland)
• CHAST: , Fiji Time, , Fiji, Pacific/Fiji, Yankee Time Zone (Fiji)
• SST: X-ray Time Zone (Pago Pago)
• GMT: Greenwich Mean Time
• GMT-1: 1 hour behind Greenwich Mean Time
• GMT-2: 2 hours behind Greenwich Mean Time
• GMT-3: 3 hours behind Greenwich Mean Time
• GMT-3:30: 3.5 hours behind Greenwich Mean Time
• GMT-4: 4 hours behind Greenwich Mean Time
• GMT-4:30: 4.5 hours behind Greenwich Mean Time
• GMT-5: 5 hours behind Greenwich Mean Time
• GMT-6: 6 hours behind Greenwich Mean Time
• GMT-7: 7 hours behind Greenwich Mean Time

307

• GMT-8: 8 hours behind Greenwich Mean Time
• GMT-9: 9 hours behind Greenwich Mean Time
• GMT-9:30: 9.5 hours behind Greenwich Mean Time
• GMT-10: 10 hours behind Greenwich Mean Time
• GMT-11: 11 hours behind Greenwich Mean Time
• GMT-12: 12 hours behind Greenwich Mean Time
• GMT-13: 13 hours behind Greenwich Mean Time
• GMT-14: 14 hours behind Greenwich Mean Time
• GMT+1: 1 hour ahead of Greenwich Mean Time
• GMT+2: 2 hours ahead of Greenwich Mean Time
• GMT+3: 3 hours ahead of Greenwich Mean Time
• GMT+3:30: 3.5 hours ahead of Greenwich Mean Time
• GMT+4: 4 hours ahead of Greenwich Mean Time
• GMT+4:30: 4.5 hours ahead of Greenwich Mean Time
• GMT+5: 5 hours ahead of Greenwich Mean Time
• GMT+5:30: 5.5 hours ahead of Greenwich Mean Time
• GMT+6: 6 hours ahead of Greenwich Mean Time
• GMT+6:30: 6.5 hours ahead of Greenwich Mean Time
• GMT+7: 7 hours ahead of Greenwich Mean Time
• GMT+7:30: 7.5 hours ahead of Greenwich Mean Time
• GMT+8: 8 hours ahead of Greenwich Mean Time
• GMT+8:30: 8.5 hours ahead of Greenwich Mean Time
• GMT+9: 9 hours ahead of Greenwich Mean Time
• GMT+9:30: 9.5 hours ahead of Greenwich Mean Time
• GMT+10: 10 hours ahead of Greenwich Mean Time
• GMT+10:30: 10.5 hours ahead of Greenwich Mean Time
• GMT+11: 11 hours ahead of Greenwich Mean Time

308

• GMT+11:30: 11.5 hours ahead of Greenwich Mean Time
• GMT+12: 12 hours ahead of Greenwich Mean Time
• GMT+12:30: 12.5 hours ahead of Greenwich Mean Time
• GMT+13: 13 hours ahead of Greenwich Mean Time
• GMT+14: 14 hours ahead of Greenwich Mean Time

309

roTimer
This object allows the script to trigger events at a specific date/time or during specified intervals. Events are triggered by
delivering roTimerEvent objects to the specified message port.

Interfaces: ifTimer, ifIdentity, ifSetMessagePort

The ifTimer interface provides the following:
• SetTime(hour As Integer, minute As Integer, second As Integer, millisecond As Integer)

As Void: Sets the time for the event to trigger. In general, if a value is -1, then it is a wildcard and will cause the event
to trigger every time the rest of the specification matches. If there are no wildcards, then the timer will trigger only once
when the specified time occurs.

• SetTime(a As Integer, b As Integer, c As Integer)

• SetDate(year As Integer, month As Integer, day As Integer) As Void: Sets the date for the event
to trigger. In general, if a value is -1, then it is a wildcard and will cause the event to trigger every time the rest of the
specification matches. If there are no wildcards, then the timer will trigger only once when the specified date/time
occurs.

• SetDayOfWeek(day_of_week As Integer) As Void: Sets the day of week for the event to trigger. In general, if
a value is -1, then it is a wildcard and will cause the event to trigger every time the rest of the specification matches. If
there are no wildcards, then the timer will trigger only once when the specified date/time occurs.

Note: It is possible, using a combination of day and day_of_week parameters, to specify invalid combinations that will
never occur. If specifications include any wildcard, then the second and millisecond specifications must be zero;
events will be raised at most once per minute near the whole minute.
• SetDateTime(As ifDateTime) As Void: Sets the time when you wish the event to trigger from an roDateTime

object. It is not possible to set wildcards using this method.
• Start() As Boolean: Starts the timer based on the current values specified using the above functions.
• Stop(): Stops the timer.

310

• SetElapsed(seconds As Integer, milliseconds As Integer): Configures a timer to trigger once the
specified time period has elapsed. Unlike the absolute timer methods above, changes to the system clock will not
affect the period of the SetElapsed() timer.

The ifIdentity interface provides the following:
• GetIdentity() As Integer

The ifSetSetMessagePort interface provides the following:

• SetPort(a As Object)

Example: This code uses SetElapsed() to create a timer that triggers every 30 seconds.

Sub Main()

 mp = CreateObject("roMessagePort")

 timer = CreateObject("roTimer")

 timer.SetPort(mp)

 timer.SetElapsed(30, 0)

 print "Start at "; Uptime(0)

 timer.Start()

 while true

 ev = mp.WaitMessage(0)

 if type(ev) = "roTimerEvent" then

 print "Timer event received at "; Uptime(0)

 timer.Start()

 else

311

 print "Another event arrived: "; type(ev)

 end if

 end while

End Sub

Example: This code creates a timer that triggers every minute using wildcards in the timer spec.

st=CreateObject("roSystemTime")

timer=CreateObject("roTimer")

mp=CreateObject("roMessagePort")

timer.SetPort(mp)

timer.SetDate(-1, -1, -1)

timer.SetTime(-1, -1, 0, 0)

timer.Start()

while true

 ev = Wait(0, mp)

 if (type(ev) = "roTimerEvent") then

 print "timer event received"

 else

 print "unexpected event received"

 endif

endwhile

312

Example: This code creates a timer that triggers once at a specific date/time.

timer=CreateObject("roTimer")

mp=CreateObject("roMessagePort")

timer.SetPort(mp)

timer.SetDate(2008, 11, 1)

timer.SetTime(0, 0, 0, 0)

timer.Start()

while true

 ev = Wait(0, mp)

 if (type(ev) = "roTimerEvent") then

 print "timer event received"

 else

 print "unexpected event received"

 endif

endwhile

313

roTimerEvent
This event object is generated by the roTimer object.

Interfaces: ifSourceIdentity

The ifSourceIdentity interface provides the following.

• GetSourceIdentity() As Integer

• SetSourceIdentity(a As Integer)

314

roTimeSpan
This object provides an interface to a simple timer for tracking the duration of activities. It is useful for tracking how long an
action has taken or whether a specified time has elapsed from a starting event.

Interfaces: ifTimeSpan

The ifTimeSpan interface provides the following:

• Mark()

• TotalMilliseconds() As Integer

• TotalSeconds() As Integer

• GetSecondsToISO8601Date(a As String) As Integer

315

LEGACY OBJECTS

roRtspStreamEvent
This object is no longer used to return events related to RTSP streams. The roVideoPlayer object now returns events
related to an associated roRtspStream.

Interfaces: ifInt

The ifInt interface provides the following:

• GetInt() As Integer

• SetInt(a As Integer)

316

roSyncPool
We recommend using roAssetPool instead.

Object Creation: The roSyncPool object is created with a single parameter that specifies the file path where the pool is
located.

CreateObject("roSyncPool", pool_path As String)

Example:

pool = CreateObject ("roSyncPool", "SD:/pool")

Interfaces: ifSyncPool, ifIdentity, ifMessagePort, ifUserData

The ifSyncPool interface provides the following:

• ValidateFiles(sync_spec As roSyncSpec, directory As String, options_array As

roAssociativeArray) As Object: Validates the files in the specified directory against the hashes in the
specified sync spec. Files that are not in the sync spec are ignored. The options array can currently contain the
following optional parameters:

o DelteCorrupt (Boolean): Automatically delete files that do not match the sync spec. The method will return
an associative array that maps each fileneame to an explanation of why it is corrupt. The array only contains
corrupt files, so the success is reported by the method returning an empty associative array.

• GetFailureReason() As String

• AsyncDownload(a As Object) As Boolean

• AsyncCancel() As Boolean

• Realize(a As Object, b As String) As Object

317

• ProtectFiles(a As Object, b As Integer) As Boolean

• ReserveMegabytes(a As Integer) As Boolean

• GetPoolSizeInMegabytes() As Integer

• EstimateRealizedSizeInMegabytes(a As Object, b As String) As Integer

• IsReady(a As Object) As Boolean

• Validate(a As Object, b As Object) As Boolean

• EnablePeerVerification(a As Boolean)

• EnableHostVerification(a As Boolean)

• SetCertificatesFile(a As String)

• SetUserAndPassword(a As String, b As String) As Boolean

• AddHeader(a As String, b As String)

• SetHeaders(a As Object) As Boolean

• SetMinimumTransferRate(a As Integer, b As Integer) As Boolean

• AsyncSuggestCache(a As Object) As Boolean

• SetProxy(a As String) As Boolean

• SetFileProgressIntervalSeconds(a As Integer) As Boolean

• QueryFiles(a As Object) As Object

• SetFileRetryCount(a As Integer) As Boolean

• SetRelativeLinkPrefix(prefix As String) As Boolean

• BindToInterface(interface As Integer) As Boolean
• EnableUnsafeAuthentication(a As Boolean)

• EnableUnsafeProxyAuthentication(enable As Boolean) As Boolean

• SetMaximumPoolSizeMegabytes(maximum_size As Integer) As Boolean

The ifIdentity interface provides the following:

• GetIdentity() As Integer

318

The ifMessagePort interface provides the following:
• SetPort(a As Object)

The ifUserData interface provides the following:

• SetUserData(a As Object)

• GetUserData () As Object

319

roSyncPoolEvent
We recommend using roAssetFetcherEvent instead.

Interfaces: ifSourceIdentity, ifSyncPoolEvent, ifUserData

The ifSourceIdentity interface provides the following:

• GetSourceIdentity() As Integer

The ifSyncPoolEvent interface provides the following

• GetEvent() As Integer

• GetName() As String

• GetResponseCode() As Integer

• GetFailureReason() As String

• GetFileIndex() As Integer

The ifUserData interface provides the following:

• SetUserData(a As Object)

• GetUserData() As Object

320

roSyncPoolFiles
We recommend using roAssetPoolFiles instead.

Interfaces: ifSyncPoolFiles

The ifSyncPoolFiles interface provides the following:

• GetFailureReason() As String

• GetPoolFilePath(a As String) As String

• GetPoolFileInfo(a As String) As Object

321

roSyncPoolProgressEvent
We recommend using roAssetFetcherProgressEvent instead.

Interfaces: ifSourceIdentity, ifSyncPoolProgressEvent, ifUserData

The ifSourceIdentity interface provides the following:

• GetSourceIdentity() As Integer

The ifSyncPoolProgressEvent interface provides the following:

• GetFileName() As String

• GetFileIndex() As Integer

• GetFileCount() As Integer

• GetCurrentFileTransferredMegabytes() As Integer

• GetCurrentFileSizeMegabytes() As Integer

• GetCurrentFilePercentage() As Float

The ifUserData interface provides the following:

• SetUserData(a As Object)

• GetUserData() As Object

322

CHANGE LOG

4.4.x, 4.2.x, 3.10.x
March 1, 2013
1.1 Added entries for roDatagramSocket [implemented in version 4.4.47], roXMLElement, roAudioPlayerMx, and

roAudioEventMx.
1.2 Added entry for roChannelManager [implemented in version 4.4.51].
1.3 Added entries for the ifUserData interface [implemented in version 4.4.47] in the roDatagramSender and

roDatagramReceiver section.
1.4 Added a description of the SetBackgroundColor() method in the roVideoOutput entry.
1.5 Added a description and listed the possible parameters for HasFeature() in the roDeviceInfo entry.
1.6 Added object creation parameters for roAssetPool and roSyncPool (as well as a more comprehensive introduction for

roAssetPool)
1.7 Revised description of the GetResponseCode() method in the roUrlEvent entry.
1.8 Changed the formatting of all example scripts to make them easier to distinguish from definitions and other

explanatory language.

March 14, 2013
2.1 Added a description of the JoinMulticastGroup()method [implemented in version 4.4.62] to the

roDatagramSocket entry.
2.2 Added a description of the EnableScanDebug()method [implemented in version 4.4.62] to the roChannelManager

entry.

March 27, 2013
3.1 Added descriptions of SetAppCacheDir() and SetAppCacheSize() methods [implemented in version 4.4.71] to

the roHtmlWidget entry.

323

3.2 Revised roVideoPlayer entry to include information about new channel scanning functionality.

April 8, 2013
4.1 Removed uses of "CF:" (compact flash) and "ATA:" directories from example scripts in favor of "SD:"
4.2 Added description of GetEdidIdentity() [implemented in 4.4.73] to the roVideoMode entry.

4.6.x, 4.4.x, 3.10.x

April 29, 2013
1.1 Revised listing and description of Australian time zones in the roSystemTime entry.
1.2 Added description of ifSerialPort.SendBreak() [implemented in 4.6.14] to the roSerialPort entry.

June 11, 2013
2.1 Added a description of the GetDiagnosticInfo() method [implemented in version 4.5.11] to the roTouchScreen

entry.
2.2 Added a description of the AddGetFromString() method [implemented in version 4.6.14] to the roHttpServer entry.

July 11, 2013
3.1 Added descriptions for all instances of ifStreamSend.SendBlock().
3.2 Added descriptions of EnableUnsafeProxyAuthentication() to the roUrlTransfer and roAssetFetcher entries.
3.3 Added a description of EnableUnsafeAuthentication() to the roAssetFetcher entry.

July 17, 2013
4.1 Expanded object creation entry for roAssetCollection.
4.2 Added a description of objection creation parameters for the roAssetPoolFiles, roAssetFetcher and roAssetRealizer

entries.

324

July 22, 2013
5.1 Added descriptions of the ProtectAssets() and UnprotectAssets() methods to the roAssetPool entry.
5.2 Added a full description of methods and their parameters to the roAssetPoolFiles entry.
5.3 Added a full description of methods and their parameters to the roAssetRealizer entry.

August 16, 2013
6.1 Removed the description of ReadLog() from the entry for roSystemLog.
6.2 Added the following method descriptions to the roUrlTransfer entry: ClearHeaders(), AddHeaders(),

PutFromString(), PutFromFile(), AsyncPutFromString(), AsyncPutFromFile(), Delete(),
AsyncDelete().

4.7.x
August 8, 2013
1.1 Added entires for the roDiskMonitor and roDiskErrorEvent objects.

September 10, 2013
2.1 Added a description for the roGlobal.EjectDrive() method.
2.2 Added descriptions of the roHdmiInputChanged event object, as well as the GetHdmiInputStatus() method, to

the roVideoMode entry.

October 1, 2013
3.1 Added descriptions for the roAudioPlayer.SetAudioDelay() and roAudioPlayer.SetVideoDelay() methods (this applies

to roVideoPlayer as well). Added a description for the related roAudioOutput.SetAudioDelay() method as well.
3.2 Added an entry and comprehensive description for roNetworkStatistics.
3.3 Added an entry for the roMediaStreamer and roMediaStreamerEvent objects.
3.4 Expanded the entry for roIRRemote to include support for the Pronto Hex Code (PHC) protocol.

325

3.5 Included additional explanation and an example for roStorageHotplug.
3.6 Added descriptions for the roVideoPlayer.AdjustVideoColor() and roVideoMode.AdjustGraphicsColor() methods.
3.7 Added descriptions for roVideoMode.GetVideoResX / GetVideoResY and roVideoMode.GetOutputResX /

GetOutputResY. Also revised description of roVideoMode.GetResX / GetResY.
3.8 Updated and corrected the list of supported baud rates for roSerialPort.SetBaudRate() and

roTouchScreen.SetBaudRate() methods.
3.9 Added a description for the roSerialPort.SetInverted method.
3.10 Added descriptions for the roDateTime.ToSecondsSinceEpoch and roDateTime.FromSecondsSinceEpoch methods.
3.11 Added a description for the roNetworkConfiguration.SetInboundShaperRate() method.
3.12 Added an example script to the roNetworkAdvertisement entry.
3.13 Expanded description for roUrlTransfer.SetTimeout().
3.14 Revised the descriptions for the ro*File.Flush() and ro*File.AsyncFlush() methods.
3.15 Added a description for the roSyncPool.ValidateFiles() method.

October 17, 2013
1.9 Revised the description of alpha values in roTextWidget to reflect the fact that they affect both text and canvas color in

4.7.

October 25, 2013
5.1 Revised the roMediaStreamer entry to reflect new functionality.
5.2 Added a description of the SetMaximumPoolSizeMegabytes() method to the roAssetPool and roSyncPool

entries.
5.3 Added the ifUserData interface to the roAssetRealizer object.
5.4 Added entries for the new SetWatchdogTimout() and DeferWatchdog() methods in the roMessagePort

section.
5.5 Added entry for new roTimer.SetElapsed() method, as well as an example showing how to use roTimer.SetElapsed().

326

November 18, 2013
6.1 Added descriptions for most roGlobal methods.
6.2 Expanded the description of the roNetworkConfiguration.SetHostName() method.

December 12, 2013
7.1 Added a description for the roNetworkConfiguration.SetupDWS() method.

January 28, 2014
8.1 Added a description for the roHtmlWidget.SetUserAgent() method. Also added an example of the standard user-

agent string reported by WebKit.
8.2 Added a list of standard URL syntax iterations that can be used with roNetworkConfiguration. SetTimeServer().
8.3 Added descriptions for the roSequenceMatcher and roSequenceMatchEvent objects.
8.4 Add a description of the SetMatcher() method to the roTCPStream and roSerialPort objects.

February 13, 2014
9.1 Added an entry for the new roTCPConnectEvent.GetSourceAddress() method (implemented in 4.7.144).
9.2 Revised the description for roTCPServer.BindToPort to reflect new functionality (implemented in 4.7.144).
9.3 Added entries and descriptions for the new roSyncManager and roSyncManagerEvent objects.
9.4 Added a description for the UserString parameter that can be passed to roAudioPlayerMx.
9.5 Added a description for the roAudioEventMx object.

March 9, 2014
10.1 Added documentation for the roSqliteDatabase, roSqliteEvent, and roSqliteStatement objects.
10.2 Revised the roRssParser script example so that the call to roTextWidget.EnableForegroundColor() includes an

alpha value.
10.3 Added more descriptive parameters to several roHtmlWidget methods.

327

March 25, 2014
11.1 Added documentation for the new roVideoMode.Screenshot() method.
11.2 Clarified some of the information in the entry for roImagePlayer.
11.3 Added more descriptive parameter names to several roHtmlWidget methods.

April 10, 2014
12.1 Revised the interface listings for roNetworkConfiguration and added the ifMessagePort and ifUserData interfaces.
12.2 Split the roReadFile, roWriteFile, roReadWriteFile, roAppendFile section into different sections for each object, and

created a new "File Objects" chapter specifically for these objects. Added object descriptions to object entry.
12.3 Added additional information to the roCecRxFrameEvent and roCecTxCompleteEvent entry (including a description

for the objects.
12.4 Modernized some of the information in the roDeviceInfo entry.
12.5 Updated several method entries for roVideoMode. Also added an entry for the SaveEdids() method.

May 12, 2014
13.1 Revised example scripts in the roImageWidget entry so that they actually use roImageWidget objects.
13.2 Made the parameters of some roRegex methods more specific.
13.3 Added descriptions for the PreloadFile(), DisplayFile(), and SetTransitionTime() methods in the

roImagePlayer entry.
13.4 Added entires for the Hide() and Show() methods in the roImagePlayer entry.
13.5 Added return types and descriptions to ifSendStream methods for roTextField, roSerialPort, roSystemLog, and

roTCPStream.
13.6 Added descriptions for ifWidget methods in the roClockWidget entry.

May 29, 2014
14.1 Removed legacy information involving mouse cursor bitmaps from the roTouchScreen entry. Added a more

thorough and up-to-date description for the SetCursorBitmap() method.

328

14.2 Added a deprication notice to the SetTempDirectory() method in the entry for roSqliteDatabase.
14.3 Added descriptions for most roSyncSpec methods.
14.4 Added descriptions for the ToIsoString() and FromIsoString() methods in the roDateTime entry.
14.5 Added the default transition duration to the description of roImagePlayer.SetTransitionDuration().
14.6 Changed the supported interface in the roSyncManager entry from ifCecInterface to ifSyncManager.

4.8.x
June 26, 2014
1.1 Added a description of the new SetTransform() method to the roVideoPlayer entry.
1.2 Revised the object creation description for roTextWidget to include the new scrolling ticker capabilities. Also added

descriptions for the new SetStringSource() and SetAnimationSpeed() methods.
1.3 Added descriptions for new roHtmlWidget methods: SetLocalStorageDir(), SetLocalStorageQuota(),

SetWebDatabaseDir(), SetWebDatabaseQuota(), FlushCachedResources(), SetHWZDefault(),
AllowLocalJavaScript(), and AllowExternalJavaScript().

1.4 Removed the outdated list of video modes in the roVideoMode entry in favor of a link to the Supported Resolutions
FAQ.

1.5 Added a description of the new SetGraphicsZOrder() to the roVideoMode entry.
1.6 Added a description of the ToFront() and ToBack() methods to the roVideoPlayer entry.
1.7 Added a description of the new GetAssetList() method to the roAssetCollection entry.
1.8 Added entries for the new roBlockCipher and roPassKey methods.
1.9 Added descriptions for the new SetRectangle() method to the following objects: roCanvasWidget, roHtmlWidget,

roTextWidget, roClockWidget, roImagePlayer.
1.10 Added a description for the new Seek() method to the roVideoPlayer/roAudioPlayer objects.
1.11 Added a description for the new SetFade() method to the roVideoPlayer object.
1.12 Added a description for the new SetKeyingValue()method (for setting luma and chroma keys) to roVideoPlayer

object.

329

1.13 Revised the roMediaStreamer entry to reflect changes and additions to the XD media server.

July 2, 2014
2.1 Clarified the language of the integer list for roImagePlayer.SetDefaultTransition().

July 21, 2014
3.1 Added a description for the RestartScript() method to the roGlobal entry.
3.2 Added an entry for the roMediaStreamer object.
3.3 Expanded the description of roVideoMode.SetGraphicsZOrder() to clarify how ordering the graphics plane works in

conjunction with ordering the video planes.

August 15, 2014
4.1 Removed the entry for roTimer.SetIdentity() because attempting to call it results in an assertion failure.
4.2 Documented the return values for the GetInt() method in the roStreamConnectResultEvent entry.
4.3 Corrected the roDeviceInfo.HasFeature() method parameters for the RS-232 serial port.
4.4 Moved the roRtspStreamEvent object entry into the Legacy Objects section.

August 22, 2014
5.1 Corrected the entry for roAssociativeArray.Lookup(). It now describes the correct return value for the method.
5.2 Split up the object creation examples for roImagePlayer and roImageWidget. They are now located in their

respective object entries and have more accurate descriptions.

September 15, 2014
6.1 Added a description for the new SetLayout() method to the roKeyboard, roKeyboardPress entry.

330

5.0.x
October 1, 2014
1.1 Added a note that roSqliteDatabase.SetTempDirectory() was removed in versions 5.0.x.
1.2 Added a caveat about optional and mandatory parameters that are included in associative arrays that are used with

roAssetCollection instances.
1.3 Clarified the entry for roAssetRealizer.Realize().
1.4 Added new language and an example to roVideoInput, clarifying how to use it to display HDMI Input.
1.5 Added a deprication notice to roVideoPlayer.PlayFileEx().
1.6 Added descriptions for the PlayFile() methods in the roVideoPlayer entry.
1.7 Added entries for the new roIRReceiver and roIRTransmitter objects.

Octeober 9, 2014
2.1 Expanded the roTextWidget.SetAnimationSpeed() entry to described the different measurements for text modes 0

and 3.
2.2 Clarified when roHtmlWidget.SetWebDatabaseDir() should be used.

November 10, 2014
3.1 Added a description for the roAssetPool.Validate() method.
3.2 Added a description for the roHtmlWidget.SetUserStyleSheet() method.

331

5.1.x
January 9, 2015
1.1 Listed events generated by the roIRReceiver object.
1.2 Documented alternate values that can be used to rotate an roTextWidget instance.
1.3 Added a description for the new roNetworkConfiguration.GetNeighborInformation() method.
1.4 Added a description for the new roTextWidget.SetMultiscreen() method.
1.5 Added descriptions for the new GetFilePlayability() and GetProbePlayability() methods to the

roVideoPlayer entry.
1.6 Added descriptions for the new SetTimeServerIntervalSeconds() and

GetTimeServerInteralSeconds() methods to the roNetworkConfiguration entry.
1.7 Added a note to the roUrlTransfer entry that you must create a separate instance of roUrlTransfer for each asset you

wish to upload/download.

January 15, 2015
2.1 Removed the AllowLocalJavaScript() and AllowExternalJavaScript() methods from the roHtmlWidget

entry. Replaced them with the new AllowJavaScriptUrls().

February 16, 2015
3.1 Added documentation for the PostJSMessage() method to the roHtmlWidget entry.
3.2 Added an introduction to the roHttpServer and roHttpEvent methods.
3.3 Added documentation for the AddMethodFromEvent() and AddMethodToFile() methods in the roHttpServer

entry.
3.4 Added documentation for the GetMethod() method in the roHttpEvent entry.
3.5 Added documentation for POSIX support to the roSystemTime entry. Also added method descriptions to the entry.
3.6 Added documentation for the SetPulseParams(), SetPulse(), and RemovePulse() to the roControlPort entry.
3.7 Fixed a typo with the auth_password parameter in the associative-array description for roAssetCollection.

332

3.8 Documented the new SyncIsoTimeStamp parameter for the Pause() and Resume() methods in the
roVideoPlayer entry.

3.9 Expanded the roControlPort entry to include information about configuring BP200/BP900 boards, as well as GPIO
LEDs.

3.10 Documented the RunGarbageCollector() method in the roGlobal entry.
3.11 Documented the SetPlaybackSpeed() method in the roVideoPlayer entry.
3.12 Documented the new response_pipe parameters (implemented in 5.1.37) for the roUrlTransfer.AsyncMethod()

method.
3.13 Documented the GetHash(), GetPrefix(), GetUserData(), and GetUserData() methods in the roUrlEvent

entry.

February 16, 2015
4.1 Documented additional video file guidelines for roSyncManager.

February 16, 2015
5.1 Documented the methods offered by the ifUserData interface in various sections.
5.2 Documented the roIRDownEvent, roIRRepeatEvent, and roIRUpEvent objects.

March 22, 2015
6.1 Added descriptions for some methods that are part of the ifStringOps interface.
6.2 Revised the method descriptions for some roGlobal methods.
6.3 Expanded the documentation for the ReserveMegabytes() and SetMaximumPoolSizeMegabytes() methods

in the roAssetPool entry.
6.4 Added documentation for codes that can be returned by the roAssetFetcherEvent.GetResponseCode() method.

April 2, 2015
7.1 Added a description for the roAssetFetcherEvent.GetEvent() method.

333

7.2 Added a description for the roHtmlWidget.StartInspectorServer()

April 8, 2015
8.1 Added a description of the SetTransform() method to the roImagePlayer entry.
8.2 Added descriptions for the CreateTestHole() and GetRectangle() methods to the roImagePlayer entry.
8.3 Removed methods that are not actually offered by the roAssetFetcherEvent object.
8.4 Documented various methods offered by roAssetFetcher, roAssetFetcherEvent, and roAssetFetcherProgressEvent.
8.5 Added documentation for the EnableResume() method to the roUrlTransfer entry.
8.6 Documented various methods offered by the roByteArray.ifByteArray interface.
8.7 Provided further description fo the roSqliteEvent.GetSqlResult() method.
8.8 Documented the roHttpServer.SetupDWSLink() method.
8.9 Clarified the operation of the roTextField.SetAnimationSpeed() method when it is used with mode 3 (scrolling ticker).

April 16, 2015
9.1 Included additional information about using the roSyncManager object.

April 23, 2015
10.1 Included descriptions for the SetPreferredVideo(), SetPreferredAudio(), and

SetPreferredCaptions() methods in the roVideoPlayer entry.

May 11, 2015
11.1 Added video profile support to the description of the roVideoMode.SetMode().

