
STA/SDM/SDE2_2.3/0008 © NXP B.V. 2006 Sep 26. All rights
reserved.

Getting Started with SDE2, Version 2.6
Sep 29, 2006

MoReUse / SDE2 2.3
Getting Started with SDE2
Version 2.6

The information presented in this document does not form part of any quotation or contract, is believed
to be accurate and reliable and may be changed without notice. No liability will be accepted by the pub-
lisher for any consequence of its use. Publication thereof does not convey nor imply any license under
patent or industrial or intellectual property rights.

NXP Semiconductors reserves the right to make changes, without notice, in the products, including cir-
cuits, standard cells and/or software, described or contained herein in order to improve design and/or
performance. NXP Semiconductors assumes no responsibility or liability for the use of any of these
products, conveys no license or title under any patent, copyright, or mask work right to these products
makes no representations or warranties that these products are free from patent copyright, or mask
work right infringement, unless otherwise specified. Applications that are described herein for any of
these products are for illustrative purposes only. NXP Semiconductors makes no representation or war-
ranty that such applications will be suitable for the specified use without further testing or modification.

Copyright © 2006 NXP Semiconductors All rights reserved.

Getting Started with SDE2 Version 2.6
Publication Date: Sep 29, 2006

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of
the copyright owner.

All other company, brand or product names are trademarks or registered trademarks of their respective
companies or organizations.

NXP Semiconductors UM SDE2 2.3
Appendix : Title
Abstract
This document contains an introductory description of SDE2 for novice
users.

Keywords

MoReUse, DVP, SDE2, Novice Users

References

[MoReUse]MoReUse 3.1 Standards Book

LIPP/2005/055

 Dec 22, 2005, Con Holzscherer

[SDE2]SDE2 2.3 User Manual

STA/SDM/SDE2_2.3/0007

Sep 29, 2006, Bhaskar G
STA/SDM/SDE2_2.3/0008 © NXP B.V. 2006 Sep 26. All rights
reserved.

NXP Semiconductors UM SDE2 2.3
Appendix : Title
Revision History

2002-04-16 1.1 SDE2 1.7 Alpha Proposed Shivaraj P
2002-05-02 1.2 SDE2 1.7 Beta Accepted Shivaraj P
2003-06-16 1.3 SDE2 1.7 Approved Shivaraj P
2004-05-18 1.4 SDE2 2.0 Alpha Proposed Shivaraj P
2004-06-18 1.5 SDE2 2.0 Beta Accepted Shivaraj P
2004-07-16 1.6 SDE2 2.0 Approved Shivaraj P, Roopa M
2005-03-18 1.7 SDE2 2.1 Alpha Proposed Shivaraj P
2005-04-08 1.8 SDE2 2.1 Beta Accepted Roopa M
2005-05-20 1.9 SDE2 2.1 Approved Bhaskar G
2005-09-02 2.0 SDE2 2.1_SP1 Approved Bhaskar G
2005-09-30 2.1 SDE2 2.2 Beta Accepted Bhaskar G
2005-10-28 2.2 SDE2 2.2 Approved Bhaskar G
2006-06-02 2.3 SDE2 2.2_SP1 Approved Bhaskar G
2006-07-28 2.4 SDE2 2.3_Alpha Proposed Bhaskar G
2006-08-11 2.5 SDE2 2.3_Beta Accepted Bhaskar G
2006-09-29 2.6 SDE2 2.3 Approved Bhaskar G
STA/SDM/SDE2_2.3/0008 © NXP B.V. 2006 Sep 26. All rights
reserved.

STA/SDM/SDE2_2.3/0008 © NXP B.V. 2006 Sep 26. All rights
reserved.

NXP Semiconductors UM SDE2 2.3
Appendix : Contents

Introduction 1
Prerequisites 1
Tools and Softwares Required 1
Purpose and Scope 2
What is SDE2? 2

Package Overview 3
Installation 3
Downloading the archive 3
Extracting the archive into a directory 3
Setting up the environment to run SDE2 4
SDE2 directory structure 7
General principle and variables in SDE2 8

Example Components 9
SDE2 component directory structure 9
Setting up the host environment for SDE2 10
Building components: example 1 13
Component makefile 13
Build location for libraries 15
Binary release 16
Building components: example 2 16
Dependencies 17
Component diversity 17
Contents of component source file 17
Contents of component makefile 18
Contents of diversity.mk file 19
Building executables/example applications 20
Contents of test application source file (test.c) 21
Contents of application makefile 21
Build location for executables 23
Building components for different configurations 24

Glossary 26

What is covered in this chapter?

This chapter provides the reader with an introduction to the Software Development
Environment 2 (SDE2). This chapter contains:

• List of prerequisites

• Overview of SDE2

1.1 Prerequisites

This manual assumes you are familiar with:

• C programming language

• Perl programming language

• Makefiles

• gmake

For more information about gmake see:
http://www.gnu.org/manual/make/html_mono/make.html

Please familiarize yourself with the terms and abbreviations in the Glossary before
reading this manual.

1.1.1 Tools and Softwares Required

SDE2 requires the following tools and softwares installed on the system, other than the
compiler toolsets

• Perl - The latest version can be downloaded from:
http://www.perl.com/download.csp

• Cygwin (for windows hosts only)- SDE2 delivers cygwin for windows users along with
the release. However, the latest version of cygwin can be downloaded from:

http://www.cygwin.com/

• GNU make (gmake) - SDE2 delivers gmake for windows users along with the
release. Other users can download the latest version of gmake from:

http://directory.fsf.org/GNU/make.html

• Doxygen and Graphviz - SDE2 users who need to generate Auto Documentation can
download Doxygen and Graphviz from:
Doxygen - http://www.doxygen.org/ or http://www.stack.nl/~dimitri/doxygen/

Graphviz- http://www.graphviz.org/

Chapter 1
Introduction
Getting Started with SDE2 - version 2.6 Sep 29, 2006

NXP Semiconductors UM SDE2 2.3
Appendix : Introduction
1.2 Purpose and Scope

This manual provides you with a concise overview of the SDE2 package, to help you
become familiar with the basic principles of SDE2, and start building components with the
help of SDE2. As this document describes only the basic SDE2 features, see SDE2 User
Manual for more details.

1.3 What is SDE2?

SDE2 is an associated product of LIPP’s MoReUse Programme (Refer [MoReUse]).

SDE2 is a generic, integrated and MoReUse compliant software build environment for the
production of reusable software IPs and systems.

The term generic in the context of build implies the support for multiple configurations.
The term integrated in the context of build implies the support for integrating 3rd party
tools.
Ther term production means the support for producing binary releases.
The term reusable means the support for reusable software development.

SDE2 makefiles are invoked using gmake. They take care of dependency checking
(source and header file dependencies), compilation and linking of software program
components for a wide range of target platforms. SDE2 can be run on the following host
platforms: PC (Windows NT or Windows XP or Windows 2000) and Linux. SDE2 supports
software components that are implemented using C, C++, assembly level language,
System C and JAVA.

The main function of SDE2 is to create and deliver re-usable software components, which
can be used across different target platforms without any changes. A source component
can be built for different platforms, by setting the corresponding set of platform specific
environment variables into the host environment. This process of setting different
platforms will be explained in detail in later part of this manual.
STA/SDM/SDE2_2.3/0008 © NXP B.V. 2006 Sep 26. All rights
reserved.

What is covered in this chapter?

This chapter provides information about obtaining the archive, installing it and background
on some of the variables. The topics include:

• Downloading the archive

• Unpacking the archive

• Setting up the SDE2 environment

• Setting up the SDE2 directory structure

• Descriptions of environment and makefile variables

2.1 Installation

The SDE2 installation procedure consists of:

1. Downloading the archive

2. Extracting the archive into a directory

3. Setting up the environment to run SDE2

2.1.1 Downloading the archive

Authorized users may download the zipped SDE2 package from the Central Online
Distribution Server (CODS) web site at:
http://pww-dtc.soton.sc.philips.com/CODS/

If you are authorized and cannot download the file, contact your local CODS administrator
or cto.helpdesk@philips.com.

A list of all authorized users can be found in that location.

2.1.2 Extracting the archive into a directory

2.1.2.1 Windows

Complete the following steps to unpack the archive on a Windows platform.

1. Open the gzipped file using WinZip.

2. Extract the contents into the directory where you want to install the SDE2 software.
For example,
c:\sde2_23

Chapter 2
Package Overview
Getting Started with SDE2 - version 2.6 Sep 29, 2006

NXP Semiconductors UM SDE2 2.3
Appendix : Package Overview
NOTE: If you intend to use a directory with its name containing space. Then, the SDE2 environment variables like
_TMROOT and _TMTGTBUILDROOT needs to be set in DOS 8.3 format.

For eg: c:/Program Files/SDE2 as c:/progra~1/sde2

2.1.2.2 Linux

Complete the following steps to unpack the archive on a Unix platform.

1. Open the gzipped file. For example,
$ cd <location of the gz file>
$ gunzip sde2_2_3.tar.gz

The file sde2_2_3.tar is now in the <location of the gz file> directory.

2. Select an SDE2 installation directory and copy the tar’d file to this directory. For
example, if the installation directory is ~/sde2, copy sde2_2_3.tar file to the this directory.
$ cp sde2_2_3.tar ~/sde2

3. Change the current directory to the installation directory.
$ cd ~/sde2

4. Run the following commands to extract the files in sde2_2_3.tar. For example,
$ tar xvf sde2_2_3.tar

Now you will see sde_template/ in your current directory and directories such as
sde, comps, intfs, inc, etc., in the sde_template directory after the untar.

2.1.3 Setting up the environment to run SDE2

After installing SDE2, you need to set certain environment variables in order to use SDE2
for building components.These environment variables determine the configuration class,
root location information etc.

SDE2 simplifies the above process by providing you with certain predefined batch files
and a simple graphical user interface for various configuration classes.The user can set
the environment variables using predefined batch files or by using graphical user interface
as described below:

2.1.3.1 Using Batch Files

SDE2 provides various configuration specific batch files at the following location:

<SDE2 installation Directory>\<SDE2 Root
Directory>\project\sites\<site name>.

For example:
c:\sde2_23\sde_template\project\sites\blrsdm

Create a new folder under <SDE2 installation Directory>\<SDE2 Root
Directory>\project\sites with the proper site name and copy all the batch files
present in the original site (blrsdm) folder to the newly created site folder. For example,

cd c:\sde2_23\sde_template\sde\sites
mkdir ehvcmd
cd ehvcmd
cp c:\sde2_23\sde_template\sde\sites\blrsdm*.*
STA/SDM/SDE2_2.3/0008 © NXP B.V. 2006 Sep 26. All rights
reserved.

NXP Semiconductors UM SDE2 2.3
Appendix : Package Overview
Initialize all the essential variables, listed in Table 2-1, in the respective batch files and run
those batch files in order to set the environment to use SDE2, as explained in section
Section 3.2, Setting up the host environment for SDE2 on page 10I

2.1.3.2 Using GUI

SDE2 provides the user interface for setting environment variables at location:

<SDE2 installation Directory>\<SDE2 Root Directory>\sde\tools.

For example:
c:\sde2_23\sde_template\sde\tools

Execute batch file setenv.bat present in <SDE2 installation
Directory>\<SDE2 Root Directory>\sde\tools.

Initialize all the essential variables listed in Table 2-1, through the graphical user interface.
Environment variables specific to each configuration class are also set by the GUI.

Following are the steps to create a batch file using GUI.

1. Call batch file setenv.bat present in the above mentioned location.

2. You will see the graphical user interface as mentioned in Figure 2-1
STA/SDM/SDE2_2.3/0008 © NXP B.V. 2006 Sep 26. All rights
reserved.

NXP Semiconductors UM SDE2 2.3
Appendix : Package Overview
Figure 2-1: Generic environment variables setting screen

3. Set the values of environment variables. This can be done in two ways:

a. Set the values by manually entering the value for each environment variable.

b. Select File → Open. Choose an existing batch file. The value for each
environment variable is populated with that present in the selected batch
file. Modify any value of environment variable, if required.

4. Click on Next. It leads you to the dialogbox as shown in Figure 2-2. If there is no valid
configuration class supported by the current release of SDE2, this dialogbox does not
appear. It goes to Batch file is created as follows..
STA/SDM/SDE2_2.3/0008 © NXP B.V. 2006 Sep 26. All rights
reserved.

NXP Semiconductors UM SDE2 2.3
Appendix : Package Overview
Figure 2-2: Configuration class specific environment variables setting screen

5. Set/modify the environment variables specific to configuration class. Configuration
class is mentioned in the first screen(Figure 2-1).

6. Click on “Create batch file and Exit” to finish setting of environment variables for the
configuration class selected. Here, only the batch file is created and GUI exits.

7. Batch file is created as follows.

<_TMTGTCPUCLASS><_TMTOOLCHAIN}>_<_TMTGTOSCLASS>_<_TMTGTREL>_<_
TMLINKTYPE>_<_TMDIVERSITY>_<_TMTGTENDIAN>.bat

The location of the batch file is under <SDE2 installation Directory>\<SDE2 Root
Directory>\project\sites\<site name>.

8. The user interface also verifies settings of the environment variables, by executing
auto-detection (auto_det.pl) perl script. Click on “Create batch file and execute
AutoDetect Script” as shown in Figure 2-2 to execute auto_det.pl. Here batch file is
created at the location mentioned above and “auto_det.pl” is executed for the
configuration class selected.

2.1.4 SDE2 directory structure

SDE2 and MoReUse implement a flat directory structure that is easily reused, because:

• A flat directory structure is independent of owner, project and architecture.

• All visible components are separately released (or releasable).

• SDE2 can easily find the component interfaces and can thus enforce certain rules.

The SDE2 directory structure contains the following directories:

For more details on SDE2 directory structure, please refer to section 3.1of SDE2 User
manual .

Figure 2-3: The SDE directory structure
STA/SDM/SDE2_2.3/0008 © NXP B.V. 2006 Sep 26. All rights
reserved.

NXP Semiconductors UM SDE2 2.3
Appendix : Package Overview
Note: The directories comps, intfs and apps can be placed in another location, in a
multiproject context. See Section 3.9, Multiproject SDE2 of the SDE2 User manual for more
details.

2.2 General principle and variables in SDE2

SDE2 is a generic build environment. The general principle behind SDE2 is to provide a
environment where you can edit and run configuration-specific batch files, which enables
you to build a particular component for different configurations without making changes to
the component. For this purpose, SDE2 uses various environment variables to determine
the location of the root directory, the name of the site, the type of configuration, etc.

The following table lists environment variables and their respective descriptions.

SDE2 also uses makefile variables. The following table lists makefile variables and their
descriptions.

The REQUIRES section contains the name of the other components whose interface is
used by the component to be built and the LIBS section contains the names of the other
components whose functions have been called by the component to be built. For a
detailed explanation on REQUIRES and LIBS, see Section 3.4.1, Dependencies on page 17.

Table 2-1: Environment variables and descriptions
Environment variable Description

_TMROOT Location of the SDE2 root directory.

_TMSITE Name of the site. Example: ehvpid, blrsdm

_TMTGTBUILDROOT SDE2 release directory.

_TMTGTCPUTYPE CPU type. Example: i486, r3940, r4300

_TMTGTCPUCLASS CPU class. Example: x86, arm, mips

_TMTGTOS OS type. Example: nt4, psos250

_TMTGTOSCLASS OS class. Example: VxWorks, pSOS

_TMTGTREL Release type of the library. Example: debug, assert, retail

Table 2-2: Makefile variables and descriptions
Makefile variable Description

DIR_LOCAL Local directory for the component to be built.

CXX_SOURCES Space-separated list of the names of all C++ source files.

C_SOURCES Space-separated list of the names of all C source files.

REQUIRES Space-separated list of the names of the other required components

LIBS Space-separated list of libraries and DLLs required for the component
to be built.

DIR_INCLUDE Space-separated list of the include directories.
STA/SDM/SDE2_2.3/0008 © NXP B.V. 2006 Sep 26. All rights
reserved.

What is covered in this chapter?

The SDE2 package contains example components in its directory structure. These
components provide an easy and first-hand method to test various features of SDE2. This
chapter:

• Explains the SDE2 directory structure

• Provides examples for building components

• Provides examples for building executables

3.1 SDE2 component directory structure

In the SDE2 directory structure, components are found in the comps directory. The main
component directory name starts with tm, followed by an optional layer name andWhat is
then by the component name. Component names always start with a capital letter and
consist of only letters and digits. Any special characters (non-alphanumeric) are not
allowed. For example, tmComp1, tmnlReal and tmDbg are legal component directory names
and Comp1, tmcomp1 and tmDbg_dvp are illegal component directory names.

Let us take an example component tmComp1.

This component can be seen in the SDE2 directory structure as below: .

The main component directory tmComp1 consists of the following subdirectories:

The docs directory contains all the documents about the component.

The inc directory contains all public header files. In this example, tmComp1.h.

Chapter 3
Example Components
Getting Started with SDE2 - version 2.6 Sep 29, 2006

Figure 3-1: SDE2 directory structure

Figure 3-2: tmComp1 directory structure

NXP Semiconductors UM SDE2 2.3
Appendix : Title
The lib directory is present if a binary build is to be released. For details on binary
releases see

Section 3.3.3

The src directory contains source files and private header files. In this example,
tmComp1.c.

The tst directory contains example applications to test the component.

For more details on the component directory structure, see Chapter 3 in MoReUse
Standards book [MoReUse].

3.2 Setting up the host environment for SDE2

For building any component in SDE2 for any specific configuration, the user should
initialize a set of environment variables, corresponding to that particular configuration.
(For more information see Section 2.2, General principle and variables in SDE2 on page
8.)

SDE2 provides the user with an easy way to set default values for these environment
variables for various configurations. SDE2 comprises several configuration-specific batch
files, which contain default values that can be modified for building components for
various configurations. Each configuration may consist of more than one batch file for
different build flavors (such as release type, link type, etc.). For example,
x86_nt_debug_static_default.bat and mips_ce_retail_dynamic_default.bat

Because the default values provided in these batch files depend on site-specific (local)
settings, they are located in the SDE2 directory structure as below:

where <SiteName> is the name of the location/site, where the user is located; for example
blrsdm, and ehvcmd. SDE2 contains the default <SiteName> blrsdm.

Complete the following steps to create site-specific batch files.

1. Create a new directory under <SDE2 Root Directory>\project\sites\ with the
local site name.

2. Copy the contents of <SDE2 Root Directory>\project\sites\blrsdm\ into the
new site-specific folder.

3. Open any required batch file and modify the values of variables as per the local
settings. (See Section 2.2, General principle and variables in SDE2 on page 8 for
more information.)_TMSITE should be initialized to the name of the new site-specific
directory created.

Figure 3-3: SDE2 directory structure
STA/SDM/SDE2_2.3/0008 © NXP B.V. 2006 Sep 26. All rights
reserved.

NXP Semiconductors UM SDE2 2.3
Appendix : Title
This is an example batch file x86_nt_debug_static_default.bat.

example for building on a pc under a Windows operating system.
#***
host platform specific settings
#**
Name of the site, user can decide one name for their site
set _TMSITE=blrsdm
Name of the directory where SDE2 is installed
set _TMROOT=c:/work/sde_template

Utility for Unix simulation on Windows
set UNAME=cygwin

Path where you want to put the libraries and other generated files
from build process
set _TMTGTBUILDROOT=c:/work/result_nt

PATH=%_TMROOT%\sde\cygwin;%PATH%

To echo messages
Set it to 1 if you want to see detailed messages from
SDE2 else leave it blank
set _TMECHO

VCC stands for Microsoft Visual C++
Do not use spaces in VCC path, only 8.3 format is allowed
This variable tells the path of the complier
set VCC=C:/progra~1/micros~3/VC98
#***
Target platform specific settings
#**
Below are the processor and operating system specific settings
Name of the OS type
set _TMTGTOS=nt4

Name of the OS class
set _TMTGTOSCLASS=nt

Name of the CPU type
set _TMTGTCPUTYPE=i486

Name of the CPU class
set _TMTGTCPUCLASS=x86

#***
flavour settings
#***
It tells endianness to be set for each configuration class
#possible values can be eb or el. For x86_nt it is always el.
STA/SDM/SDE2_2.3/0008 © NXP B.V. 2006 Sep 26. All rights
reserved.

NXP Semiconductors UM SDE2 2.3
Appendix : Title
4. Open a DOS shell and run the batch file.

Now, the host environment is set to a specific configuration, for which the batch file is run
and you can start building components for that configuration using SDE2.

The above mentioned steps can be ignored, if the host environment for SDE2 is set using
GUI. Refer Section 2.1.3.2, Using GUI on page 5 .The graphical user interface does the
above steps for you.

To view the setting, at the DOS command line type:

set

You can also modify the value of an existing variable by typing:

set <EnvironmentVariableName>=<NewValue>

If the host platform is Unix, the value of an existing variable can be modified by typing the
following commands:

export <EnviromentVariableName>=<NewValue> – Korn shell

setenv <EnvironmentVariableName>=<NewValue> – C shell

<EnvironmentVariableName>=<NewValue>;export var – Bourne shell

#eb stands for big endian and el stands for little endian.

set _TMTGTENDIAN=el
type of release debug, assert or retail
set _TMTGTREL=debug

Link type: this value is not currently used but should be set to
static
set _TMLINKTYPE=static

optional flavour setting for diversity to be explained later
set _TMDIVERSITY=_flo_mp_
call a batch file to set few parameters for VC++
call %VCC%\bin\vcvars32.bat
STA/SDM/SDE2_2.3/0008 © NXP B.V. 2006 Sep 26. All rights
reserved.

NXP Semiconductors UM SDE2 2.3
Appendix : Title
3.3 Building components: example 1

This section provides an example for building components. The first example component
is tmComp1. This component is located in <SDE2 Root Directory>\comps. The
contents of the component directory tmComp1 are below:

The subdirectories src, inc, lib, docs and tst are already explained in Section 3.1, SDE2
component directory structure on page 9. The component directory tmComp1 also contains
two files: configuration.txt and makefile.

The configuration.txt file contains information about all possible configurations, for which the
component is buildable. It is not necessary to understand the details about this file to use
SDE2.

The makefile is the entry point to the build component. Details about the makefile are
described in the following section.

3.3.1 Component makefile

Every component must have a makefile in its main directory. The name of this file is
makefile. This is the entry point for gmake to process and build libraries for the component.

The makefile contains all the required SDE2-specific definitions and rules to build several
targets.

The first line must contain the location of the component.
DIR_LOCAL = comps\tmComp1

The second line includes a file environment.mk which initializes some important makefile
variables.

All the source files corresponding to the component are also specified, along with their
relative location information.

C_SOURCES = src\tmComp1.c

The makefile contains a REQUIRES section to indicate the interface dependency and a LIBS
section, to indicate the functional dependency of the component on other components.
These sections are explained more in detail, see Section 3.4.1, Dependencies on page
17.

The makefile specifies any local flags, that need to be used while compiling the component
source files (LOCAL_CFLAGS, LOCAL_CXXFLAGS).

Figure 3-4: tmComp1 directory structure
STA/SDM/SDE2_2.3/0008 © NXP B.V. 2006 Sep 26. All rights
reserved.

NXP Semiconductors UM SDE2 2.3
Appendix : Title
The makefile defines a target all, which further contains the targets configuration and lib. The
configuration target, which is mandatory, checks configurations and sets locations to store
the output libraries created for different configurations. The lib target builds the library by
including a configuration-specific makelib.mk file.

The contents of makefile for the component tmComp1 are listed below:

Complete the following steps to build the component under Windows NT:

1. Open a DOS shell, and run the site-specific batch file of the required configuration.

2. Change the present working directory to the component directory. For example,

<SDE2 Root Directory>\comps\tmComp1

3. Type the following command:

gmake

The command gmake creates libraries corresponding to tmComp1. Libraries are generated in
the <Build directory>, as specified by the environment variable _TMTGTBUILDROOT (library
locations are explained in detail in the following section, Section 3.3.2, Build location for
libraries on page 15).

#Component makefile for tmComp1
#relative path of the component directory
DIR_LOCAL = comps/tmComp1

Do not change the following include. It sets some makefile
variables It should always be there
include $(_TMROOT)/sde/environment.mk

#---
Source environment variables
Relative path of C source files
C_SOURCES=\
src/tmComp1.c
#***
Do not change this
#***
Following are the 2 targets to build The configuration target is
mandatory; it checks the current configuration. The lib target
builds the library.
all: configuration lib
#***
Do not change the following include
#***
This .mk file is included to build library specific to the
configuration
ifneq ($(DIR_CONFIG),_)
include $(DIR_SDE)/$(DIR_CONFIG)/makelib.mk
endif
STA/SDM/SDE2_2.3/0008 © NXP B.V. 2006 Sep 26. All rights
reserved.

NXP Semiconductors UM SDE2 2.3
Appendix : Title
You can also delete/clean the libraries by running the gmake clean command, which deletes
the generated libraries. Then you can recreate the libraries by running the gmake command
again.

3.3.2 Build location for libraries

Libraries are located in the <Build directory>. The <Build directory> is specified, using the
environment variable _TMTGTBUILDROOT. (Please verify your site-specific batch file for
_TMTGTBUILDROOT to ensure it is set for the exact build location). If the path specified for
this variable does not exist, SDE2 will create this directory.

The <Build_directory> consists of comps and project subdirectories.The project subdirectory
contains the location information of all the components present in the SDE2 comps
directory.

The comps subdirectory further consists of a generated subdirectory and several
component subdirectories with the respective component names.

The generated directory contains a lib subdirectory, which further contains several
directories for different configuration classes, endianness and CPU types. For example;
x86_nt_eb_i486 and tm_psos_el_tm32. All the generated libraries are stored in these directories,
as their respective configurations, CPU type and endianness settings.

The generated libraries follow the naming convention:

lib<CompName><RELType>.<Extension>, where:

<CompName> – name of the component

<RELType> – release type set in the environment

(For debug <RELType>=_g, for assert, <RELType>=_a and for retail,
<RELType>=<empty>.)

<Extension> – library file extension depending on the configuration class

 (For example, for x86_nt, <Extension> = lib and for tm_psos, <Extension> = a.)

In the example component of tmComp1 for x86_nt configuration, if the environment variables
are set:
_TMTGTBUILDROOT = c:\build_out
_TMTGTCPUTYPE= i486

Figure 3-5: Build Directory structure
STA/SDM/SDE2_2.3/0008 © NXP B.V. 2006 Sep 26. All rights
reserved.

NXP Semiconductors UM SDE2 2.3
Appendix : Title
_TMTGTENDIAN = el
_TMTGTREL = debug,

the location of the generated library is:
C:\build_out\comps\generated\lib\x86_nt_el_i486\libtmComp1_g.lib

As stated, <Build_directory>\comps also contains component subdirectories. Each component
directory contains a subdirectory tmp, to hold the intermediate files generated while
building the components, such as object files, dependency files, option files, etc.

Note: If _TMTGTBUILDROOT is not defined in your batch file, the libraries are generated in
<SDE2 Root Directory>\comps\generated\lib\x86nt_el_i486\

3.3.3 Binary release

SDE2 is capable of producing binary releases for the components. The binary release of a
component consists of the libraries built for the component in the component main
directory for certain release modes and diversities. If you want to create a binary release,
set the environment variable _TMTGTCOPYLIB to 1. In this case, the libraries are first
generated in the same way as explained above and then the lib directory in the generated
build tree is copied into the component directory.

In our example component tmComp1, the directory structure for a binary release is:

3.4 Building components: example 2

Now build the second example component, tmComp8, which has:

• Dependencies on other components

• A component diversity

A component can be dependent on other components in two ways:

1. Interface dependency

2. Functional dependency

Figure 3-6: Binary release directory structure
STA/SDM/SDE2_2.3/0008 © NXP B.V. 2006 Sep 26. All rights
reserved.

NXP Semiconductors UM SDE2 2.3
Appendix : Title
3.4.1 Dependencies

In case of interface dependency, a component requires the interface (header files) of
other components. This situation can be specified in the component makefile by means of
a REQUIRES section.

For example, in the makefile of tmComp8,
REQUIRES = tmComp1

means tmComp8 requires the header files of tmComp1 (tmComp1.h).

In case of functional dependency, the component can call functions, which are
implemented as parts of other components. This situation is specified in the component
makefile by means of a LIBS section. For example, in the makefile of tmComp8,

LIBS = tmComp1

means tmComp8 calls a function, which is implemented as part of tmComp1.

3.4.2 Component diversity

Component diversities are nothing but different flavors for which different libraries are
built. A component may behave differently with different diversities. A best reusable
component is one which does not posses any diversity. However, practically, these
diversities are indispensable.

Diversity flavors are defined by an environment variable _TMDIVERSITY. The component
makefile reads the value of this variable and builds a separate library for each value of
_TMDIVERSITY. For example,

_TMDIVERSITY = _flo_mp_

The naming convention for the libraries generated with diversities is as follows:
libtm<CompName><Diversity>_<RELType>.<Extension>

For example: libtmComp8_mp_g.lib

Note: _TMDIVERSITY can be set in the environment with all valid diversity values, each
separated by an underscore (_). A component can generate different libraries for only those
diversity values, which are supported by the component. Thus, the generated library name
will contain only those diversity values, for which it is generated. For example, if
_TMDIVERSITY is set to _flo_mp_, The library name for tmComp8 will not contain _flo in
<Diversity> field.

3.4.3 Contents of component source file

The contents of the tmComp8 component source file (tmComp8.c) are listed below, to show
how this component calls a function implemented in another component. This source file
calls the function tmComp1Print(), which is implemented in component tmComp1. Also note
that this file requires the header file (tmComp1.h) of tmComp1. When you include any
interface (header file), it is not required to include it with its absolute path.

#include "tmComp8.h"
#include "tmComp1.h"
STA/SDM/SDE2_2.3/0008 © NXP B.V. 2006 Sep 26. All rights
reserved.

NXP Semiconductors UM SDE2 2.3
Appendix : Title
3.4.4 Contents of component makefile

Now look into the component makefile of tmComp8. As we saw before, this component has
dependencies and diversities. In order to take care of dependency, you need to add
REQUIRES and LIBS sections in the component makefile as shown below:

REQUIRES = tmComp1

LIBS = tmComp1

In order to take care of diversity in tmComp8, a separate diversity.mk file is created and
included in the component makefile. This diversity.mk file is also located in the component
directory. (The contents of diversity.mk file are discussed in the following Section 3.4.5,
Contents of diversity.mk file on page 19).

If a component has diversity, separate libraries are generated for each diversity flavor.
This is accomplished by defining a makefile variable LIB_SUFFIX in the component
makefile.

LIB_SUFFIX = $(_tmComp8_DIVERSITY)

The value of the variable _tmComp8_DIVERSITY is derived from the value of the environment
variable _TMDIVERSITY. The target diversity, defined in diversity.mk file, determines the value
of _TMDIVERSITY (see Section 3.4.5, Contents of diversity.mk file on page 19). So, it is
important to include this target (diversity) with the target all, as shown below:

all: configuration diversity lib

The contents of the component makefile are listed below:

void tmComp8Print(int i){
int j=8+i*10;
printf("value %d:\n Calling:\n",j);

/* call to a function implemented in tmComp1 */
tmComp1Print(2);

};

#Component makefile for tmComp8
#relative path of the component directory
DIR_LOCAL = comps/tmComp8
Do not change the following include it sets some makefile
variables. It should always be there
include $(_TMROOT)/sde/environment.mk
#--
Source environment variables
#--
C_SOURCES = src/tmComp8.c
#--
Required components
#---
name of the component where called function is implemented. In this
case we have called a function in tmcomp8/src/tmcomp8.c which is
actually implemented in tmComp1
REQUIRES = tmComp1
LIBS = tmComp1
STA/SDM/SDE2_2.3/0008 © NXP B.V. 2006 Sep 26. All rights
reserved.

NXP Semiconductors UM SDE2 2.3
Appendix : Title
3.4.5 Contents of diversity.mk file

We have seen that if a component has diversities, a separate library is built for each
diversity flavor.

The diversity.mk file, located in the component directory, reads the diversity settings from
the environment variable _TMDIVERSITY, and passes in the component makefile. The
diversity setting is read to a variable _<CompName>_DIVERSITY in diversity.mk file and this
value is used to initialize LIB_SUFFIX in the component makefile.

Consider the example component tmComp8. This component has two diversity flavors:
single processor and multiprocessor (_sp_ and _mp_). The diversity.mk file, located in
<SDE2 Root Directory>\comps\tmComp8, checks the value of _TMDIVERSITY for _mp_
or _sp_ and assigns the value read to a variable, _tmComp8_DIVERSITY. If the variable
_TMDIVERSITY is not defined or defined with a value other than either _sp_ or _mp_, it
displays an error, stating that _TMDIVERSITY should contain either _mp_ or _sp_.

The contents of diversity.mk file, for the component tmComp8, are listed below:

This is to generate DLLs
EXPORTS = tmComp8Print
#check diversity, define _<component>_DIVERSITY
#to check the type of diversities component is sensitive to
#it will include diersity.mk see next section for contents of
#diversity.mk
include diversity.mk
#to generate the library name as per the diversity. This will be
#added to the name of the library.
LIB_SUFFIX = $(_tmComp8_DIVERSITY)
#***
Do not change this
#**
Following are the 3 targets to build. The configuration target is
mandatory; it sets the configuration. The lib target builds
the library. Diversity target is to check if _TMDIVERSITY is set
with proper values or not
all: configuration diversity lib
Include this file is to build library specific to the configuration
ifneq ($(DIR_CONFIG),_)
include $(DIR_SDE)/$(DIR_CONFIG)/makelib.mk
endif

to check diversity if defined by _TMDIVERSITY variable
and if yes whether it is _mp or _sp
ifeq ($(findstring _mp_,$(_TMDIVERSITY)),_mp_)
_tmComp8_DIVERSITY=_mp
else
ifeq ($(findstring _sp_,$(_TMDIVERSITY)),_sp_)
_tmComp8_DIVERSITY=_sp
endif
endif
STA/SDM/SDE2_2.3/0008 © NXP B.V. 2006 Sep 26. All rights
reserved.

NXP Semiconductors UM SDE2 2.3
Appendix : Title
3.5 Building executables/example applications

Now we are familiar with building reusable components. In a real-life scenario, we need to
build applications by making use of several components. All the required components for
building an application are available as libraries. An application should also have access
to the component interfaces.

After you build a component, it is important to test it with some example applications.
SDE2 provides you with some example applications along with the example components.
These applications are available in the tst directory of main component directory. The
directory tst consists of several subdirectories, each one for implementing different test
cases (Tst1, Tst2 etc.). Each of these subdirectories is further comprised of docs, src
directories and a makefile. The docs directory will have documents related to the application
and the src directory will contain the application source files.

Now, let us build an example application to test components. Let us take the example of
component tmComp8. SDE2 provides you with a test application in <SDE2 Root
Directory>\comps\tmComp8\tst\Tst1. The directory Tst1 contains a src directory,
which has an application source file test.c. The following section discusses the contents of
this source file (test.c).

target diversity
#If _TMDIVERSITY is not defined it flashes the appropriate message
diversity::
ifeq (,$(filter _mp_ _sp_, $(findstring _mp_, $(_TMDIVERSITY))$(findstring _sp_, $(_TMDIVERSITY))))

@$(ECHO) "_TMDIVERSITY ($(_TMDIVERSITY)) must contain one of _mp_ or _sp_"
@exit 1

endif (,$(filter _mp_ _sp_, $(findstring _mp_, $(_TMDIVERSITY))$(findstring _sp_, $(_TMDIVERSITY))))

Figure 3-7: Locations of test directories
STA/SDM/SDE2_2.3/0008 © NXP B.V. 2006 Sep 26. All rights
reserved.

NXP Semiconductors UM SDE2 2.3
Appendix : Title
3.5.1 Contents of test application source file (test.c)

An example application source file for the component tmComp8 is located in the directory
<SDE2 Root Directory>\comps\tmComp8\tst\Tst1\src. This file calls a function,
which is implemented as part of tmComp8. Also, the interface of tmComp8 (tmComp8.h) is
included in the source file.

The contents of this source file are listed below.

3.5.2 Contents of application makefile

Applications are built in the same way as components are built. Hence, each application
will have its own makefile. In our example of tmComp8, the makefile is located in the
directory<SDE2 Root Directory>\comps\tmComp8\tst\Tst1.

Any application, which makes use of a particular component, should have access to the
component interface. This is accomplished by having a REQUIRES section in the
application makefile – REQUIRES = tmComp8

Any application, which makes use of a particular component, might also call functions,
which are implemented as part of the component itself. This is accomplished by having
LIBS section in the application makefile – LIBS = tmComp8

#include "tmComp8.h"
#include <stdio.h>
static void MyMain();
/* specific section for psos and VxWorks */
#if TMFL_OS_IS_PSOS || TMFL_OS_IS_VXWORKS
extern void GtmTick()
{
}

void root(void)
{

MyMain();
}
#else
int main (void)
{

MyMain();
return 0;

}
#endif

void MyMain()
{

printf("This is test executable for tmComp8a component.\n");
printf("It prints ");

/* function call whose implementation is in tmcomp8 library */
tmComp8Print(4);

}

STA/SDM/SDE2_2.3/0008 © NXP B.V. 2006 Sep 26. All rights
reserved.

NXP Semiconductors UM SDE2 2.3
Appendix : Title
Application makefile is also comprised of a variable TARGET, to define the name of the
executable to be built. – TARGET = test

(In this case, the name of the built executable is test.<extension>, where <extension> depends
on the configuration class, for example, test.exe, test.hex, test.out, etc.)

The application makefile also defines a target all, which further consists of targets
configuration and target. The target configuration, which is mandatory, checks configurations
and sets locations to store the output executables created for different configurations set
in the environment. The target target builds an application/executable by including the
configuration-specific maketarget_$(_TMBSL).mk file. The environment variable _TMBSL
specifies various board support packages (if applicable), for which applications need to
be built.

The contents of an application makefile are listed below:

#Application makefile

DIR_LOCAL = comps/tmComp8/tst/Tst1

Do not change the following include it sets some makefile
variables. It should always be there
include $(_TMROOT)/sde/environment.mk
#--
Source environment variables
#---
relative path of the source files
C_SOURCES = src/test.c
#--
Required components
#--
#if it is calling function from tmComp8 library or interfaces is used
#whose implementation is in tmComp1 . Here it is calling the function
#so name of the component is mentioned here
REQUIRES = tmComp8
it is calling functions from tmComp8 library . The name of the
components is mentioned here in LIBS section

LIBS = tmComp8
#--
name of the target to build
#--
We are building a target executable here test will be name of
the file generated.
TARGET = test
#***
Do not change this
#***
Following are the 2 targets to build The configuration target is
mandatory; it sets the
configuration. target builds the executable.
STA/SDM/SDE2_2.3/0008 © NXP B.V. 2006 Sep 26. All rights
reserved.

NXP Semiconductors UM SDE2 2.3
Appendix : Title
Complete the following steps to build the component:

1. Open a DOS/Unix shell, and run the site-specific batch file of the required
configuration.

2. Change the present working directory to the component directory. For example,

<SDE2 Root Directory>\comps\tmComp8

3. Type the following command to build component tmComp8:

gmake

4. Change the present working directory to the example application directory. For
example,

<SDE2 Root Directory>\comps\tmComp8\tst\tst1

5. Type the following command to build the example application:

gmake

The command gmake creates an executable corresponding to tmComp8. Executables
are generated in the <Build directory> as explained in the following section, Section
3.5.3.

3.5.3 Build location for executables

Executables are also located in the <Build directory>, as specified by the environment
variable _TMTGTBUILDROOT. The contents of <Build directory> are already explained in
Section 3.3.2, Build location for libraries on page 15.

In <Build directory>, the executables are stored in the component-specific directories.
Component-specific directories are located in <Build_directory>\comps. Each
component-specific directory contains a tst/Tst1 subdirectory. The directory Tst1
comprises bin and tmp subdirectories. While all the temporary files are stored in the tmp
directory, the bin directory contains separate subdirectories named by the configuration,
link type, endianness, CPU type and diversity, to hold the corresponding executable.

all: configuration target

#**
Do not change the following include
#**
ifneq ($(DIR_CONFIG),_)
includes the .mk file to generate excutable
include $(DIR_SDE)/$(DIR_CONFIG)/maketarget$(_TMBSL).mk
endif
STA/SDM/SDE2_2.3/0008 © NXP B.V. 2006 Sep 26. All rights
reserved.

NXP Semiconductors UM SDE2 2.3
Appendix : Title
In the above example of tmComp8, the executable is located as shown below:

3.6 Building components for different configurations

With SDE2, you can create and deliver reusable software components, which can be used
across different target platforms, without any changes. In order to make components
usable across different platforms, you should be able to build them, accordingly for
different platforms. SDE2 provides an easy means to build a single component for various
configurations, by setting and running different configuration-specific batch files.

This explains how build the same component for different platforms with the help of an
example. So far, we built some example components (tmComp1, tmComp8) for a specific
configuration (x86_nt). Now let us see how to build the same components for a different
configuration (tm_psos).

Complete the following steps to build components for a different configuration:

1. Edit the site-specific batch file of correct configuration for setting the environment
variables correctly. For example,
tm_psos_retail_static_el_tm32_winnt_default.bat

2. Open a DOS shell and run the above batch file.

3. Change the current working directory to the component directory (tmComp1 or
tmComp8).

4. Type the following command to build components for tm_psos configuration:
gmake

To build tmComp8, remember to set _TMDIVERSITY = _mp_ or _sp_.

5. Change the directory to the executable directory (tmComp8\tst\Tst1).

6. Type the following command to build the executable for tm_psos platform:
gmake

Figure 3-8: tmComp8 directory structure
STA/SDM/SDE2_2.3/0008 © NXP B.V. 2006 Sep 26. All rights
reserved.

NXP Semiconductors UM SDE2 2.3
Appendix : Title
The libraries and executables built for different configurations are stored in different
configuration-specific subdirectories. The <Build directory> structure, with
components built for different platforms is shown below:

Figure 3-9: Build Directory structure
STA/SDM/SDE2_2.3/0008 © NXP B.V. 2006 Sep 26. All rights
reserved.

Appendix A
Glossary
Getting Started with SDE2 - version 2.6 Sep 29, 2006

Table A-1: Frequently used terms and abbreviations
Term Description

Binary release It consists of two parts. The lib directory contains the libraries/DLLs of the
component

and documents & interfaces in their respective directories as per MoReUse

standards.
CODS Central Online Distribution Server

Component A coherent and encapsulated piece of software with well-defined interfaces, that was
designed with reuse in mind so it may be deployed independently.

Configuration Set of options determining which compiler settings are used for building products
(libraries/executables) from source code.

Configuration class The combination of CPUClass and operating system, used for building source files.
Each configuration is part of a configuration class.

CPU Central Processing Unit

CPUClass CPU Family. For example x86, arm

CPUType A particular variant of CPUClass. For example i486, r3940

Cygwin UNIX emulation for PC

DOS Disk Operating System

DVP Digital Video Platform

Generic Describes SDE2’s capability of being built for multiple configurations

GUI Graphical User Interface
Integrated Used to describe SDE2’s capability of including third-party tools at build time

MoReUse A methodology for reusing software cores

OS Operating System

OSClass Operating systems family. For example nt, pSOS

OSType A particular version of OSClass. For example nt4, psos250

Production Building a binary release using SDE2

Reusable Refers to SDE2’s capability of building reusable software

NXP Semiconductors UM SDE2 2.3
Appendix : Glossary
LIPP Library and Intellectual Property Partnership

SDE2 Software Development Environment 2; build environment consisting of a directory
structure, makefiles and tools

ToolChain A specific set of build tools (compiler/linker) for a specific Configuration
Class For example ms, tcs

Table A-1: Frequently used terms and abbreviations
Term Description
STA/SDM/SDE2_2.3/0008 © NXP B.V. 2006 Sep 26. All rights
reserved.

	Getting Started with SDE2, Version 2.6
	Sep 29, 2006
	MoReUse / SDE2 2.3
	Getting Started with SDE2
	Version 2.6

	What is covered in this chapter?
	1.1 Prerequisites
	1.1.1 Tools and Softwares Required

	1.2 Purpose and Scope
	1.3 What is SDE2?
	What is covered in this chapter?

	2.1 Installation
	1. Downloading the archive
	2. Extracting the archive into a directory
	3. Setting up the environment to run SDE2
	2.1.1 Downloading the archive
	2.1.2 Extracting the archive into a directory
	2.1.2.1 Windows
	1. Open the gzipped file using WinZip.
	2. Extract the contents into the directory where you want to install the SDE2 software. For example,

	2.1.2.2 Linux
	1. Open the gzipped file. For example,
	2. Select an SDE2 installation directory and copy the tar’d file to this directory. For example, if the installation directory is ~/sde2, copy sde2_2_3.tar file to the this directory.
	3. Change the current directory to the installation directory.
	4. Run the following commands to extract the files in sde2_2_3.tar. For example,

	2.1.3 Setting up the environment to run SDE2
	2.1.3.1 Using Batch Files
	2.1.3.2 Using GUI
	1. Call batch file setenv.bat present in the above mentioned location.
	2. You will see the graphical user interface as mentioned in Figure 2-1
	Figure 2-1: Generic environment variables setting screen

	3. Set the values of environment variables. This can be done in two ways:
	a. Set the values by manually entering the value for each environment variable.
	b. Select File Æ Open. Choose an existing batch file. The value for each environment variable is populated with that present in the selected batch file. Modify any value of environment variable, if required.

	4. Click on Next. It leads you to the dialogbox as shown in Figure 2-2. If there is no valid configuration class supported by the current release of SDE2, this dialogbox does not appear. It goes to Batch file is created as follows..
	Figure 2-2: Configuration class specific environment variables setting screen

	5. Set/modify the environment variables specific to configuration class. Configuration class is mentioned in the first screen(Figure 2-1).
	6. Click on “Create batch file and Exit” to finish setting of environment variables for the configuration class selected. Here, only the batch file is created and GUI exits.
	7. Batch file is created as follows.
	8. The user interface also verifies settings of the environment variables, by executing auto-detection (auto_det.pl) perl script...

	2.1.4 SDE2 directory structure
	Figure 2-3: The SDE directory structure

	2.2 General principle and variables in SDE2
	Table 2-1: Environment variables and descriptions
	Table 2-2: Makefile variables and descriptions
	What is covered in this chapter?

	3.1 SDE2 component directory structure
	Figure 3-1: SDE2 directory structure
	Figure 3-2: tmComp1 directory structure

	3.2 Setting up the host environment for SDE2
	Figure 3-3: SDE2 directory structure
	1. Create a new directory under <SDE2 Root Directory>\project\sites\ with the local site name.
	2. Copy the contents of <SDE2 Root Directory>\project\sites\blrsdm\ into the new site-specific folder.
	3. Open any required batch file and modify the values of variables as per the local settings. (See Section 2.2, General principl...
	4. Open a DOS shell and run the batch file.

	3.3 Building components: example 1
	Figure 3-4: tmComp1 directory structure
	3.3.1 Component makefile
	1. Open a DOS shell, and run the site-specific batch file of the required configuration.
	2. Change the present working directory to the component directory. For example,
	3. Type the following command:

	3.3.2 Build location for libraries
	Figure 3-5: Build Directory structure

	3.3.3 Binary release
	Figure 3-6: Binary release directory structure

	3.4 Building components: example 2
	1. Interface dependency
	2. Functional dependency
	3.4.1 Dependencies
	3.4.2 Component diversity
	3.4.3 Contents of component source file
	3.4.4 Contents of component makefile
	3.4.5 Contents of diversity.mk file

	3.5 Building executables/example applications
	Figure 3-7: Locations of test directories
	3.5.1 Contents of test application source file (test.c)
	3.5.2 Contents of application makefile
	1. Open a DOS/Unix shell, and run the site-specific batch file of the required configuration.
	2. Change the present working directory to the component directory. For example,
	3. Type the following command to build component tmComp8:
	4. Change the present working directory to the example application directory. For example,
	5. Type the following command to build the example application:

	3.5.3 Build location for executables
	Figure 3-8: tmComp8 directory structure

	3.6 Building components for different configurations
	1. Edit the site-specific batch file of correct configuration for setting the environment variables correctly. For example,
	2. Open a DOS shell and run the above batch file.
	3. Change the current working directory to the component directory (tmComp1 or tmComp8).
	4. Type the following command to build components for tm_psos configuration:
	5. Change the directory to the executable directory (tmComp8\tst\Tst1).
	6. Type the following command to build the executable for tm_psos platform:
	Figure 3-9: Build Directory structure

	Table A-1: Frequently used terms and abbreviations

