

STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 i of iv

User Manual Version 3.8
Sep 29, 2006
STA/SDM/SDE2_2.3/0007

MoReUse / SDE2 2.3
User Manual Version 3.8

The information presented in this document does not form part of any quotation or contract, is believed
to be accurate and reliable and may be changed without notice. No liability will be accepted by the pub-
lisher for any consequence of its use. Publication thereof does not convey nor imply any license under
patent or industrial or intellectual property rights.

NXP Semiconductors reserves the right to make changes, without notice, in the products, including cir-
cuits, standard cells and/or software, described or contained herein in order to improve design and/or
performance. NXP Semiconductors assumes no responsibility or liability for the use of any of these
products, conveys no license or title under any patent, copyright, or mask work right to these products
makes no representations or warranties that these products are free from patent copyright, or mask
work right infringement, unless otherwise specified. Applications that are described herein for any of
these products are for illustrative purposes only. NXP Semiconductors makes no representation or war-
ranty that such applications will be suitable for the specified use without further testing or modification.

Copyright © 2006 NXP Semiconductors All rights reserved.

User Manual Version 3.8
Publication Date: Sep 29, 2006

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of
the copyright owner.

All other company, brand or product names are trademarks or registered trademarks of their respective
companies or organizations.

NXP Semiconductors UM SDE2 2.3
Appendix : Title
Abstract
This document is the User’s Manual of SDE2 Version 2.3.

Keywords

MoReUse, SDE2, Users’ Manual

References

[MoReUse]MoReUse 3.1 Standards Book

LIPP/2005/055 - December 2005

[RELNOT]DVP SDE2 2.3 Release Notes,

STA/SDM/SDE2_2.3/0012

[RULES]MoReUse Rules Document

RTG/CMD/2001/0252, version 2.10 – October 2005

[QMORE]Qmore 03.01.00 User Manual, version 1.0,

SDM/ReDT/Software/Qmore_03.01.00/018

[BCaM]http://pww.cto.sc.philips.com/bcam-processes/
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 iii of iv

NXP Semiconductors UM SDE2 2.3
Appendix : Title
Revision History

2003-04-16 2.2 SDE2 1.7 Alpha Proposed Shivaraj P, Bhaskar
G

2003-04-22 2.3 SDE2 1.7 Beta Accepted Shivaraj P
2003-06-16 2.4 SDE2 1.7 Approved Bhaskar G
2004-05-19 2.5 SDE2 2.0 Alpha Proposed Shivaraj P
2004-06-18 2.6 SDE2 2.0 Beta Accepted Shivaraj P
2004-07-12 2.7 SDE2 2.0 Approved Shivaraj P
2004-03-18 2.8 SDE2 2.1 Alpha Proposed Shivaraj P,

2004-04-08 2.9 SDE2 2.1 Beta Accepted Shivaraj P

2004-05-20 3.0 SDE2 2.1 Approved Bhaskar G

2005-09-02 3.1 SDE2 2.1_SP1 Approved Bhaskar G
2005-09-23 3.2 SDE2 2.2 Alpha Proposed Roopa M
2005-09-30 3.3 SDE2 2.2 Beta Accepted Bhaskar G
2005-10-28 3.4 SDE2 2.2 Approved Bhaskar G
2006-06-02 3.5 SDE2 2.2_SP1 Approved Bhaskar G
2006-07-28 3.6 SDE2 2.3 Alpha Proposed Bhaskar G
2006-08-11 3.7 SDE2 2.3 Beta Accepted Bhaskar G
2006-09-29 3.8 SDE2 2.3 Approved Bhaskar G
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 iv of iv

Introduction 1

Tutorial 5
Structure of tm<your component name> directory 6
Structure of Build_directory 8
Structure after executing the makefile 9

Reference Manual 10
Internal structure of the comps directory 12
Structure of the intfs directory 14
Example using platform-specific source files 15
Library directory structure if _TMTGTBUILDROOT is not empty 16
Library directory structure if _TMTGTBUILDROOT is undefined or empty 16
Example x86_nt compilation with two components and two diversities 44
Example of DependOn relationship 48
Example component structure for SDE_in_SDE 50
Example of a multiple project structure 57
Global SDE directory 57
Global SDE directory 60
Location of IDL files 63

System C support in SDE2 105

Installation and Customization 107
Directory structure of a project utv 115

Java Building 116

Assembler Support 124

Visual Studio Integration 125
Directory structure for tmComp11 component 125
Create the msdev_tmComp11 project 126
Adding the DVP2 make tool 128
Add tool to generate DVP2 component browse info 130

Autodocumentation 132

Autodocumentation - Docjet 139

Make Utilities and Cygwin 141

Concept of SDE2 (makefile) structure 143
SDE directory structure 144

(PC)Lint support in SDE2 147

Adding a Configuration Class 148

NXP Semiconductors UM SDE2 2.3
Appendix : Figures
QAC 149

Eclipse Integration 151
Directory structure of Sde2_Eclipse Plugin 152
Eclipse IDE after integration with SDE2 Plug-in 153
Pop up menu of SDE2 Plug-in 154
SDE2 Pop-up menu options 155
Main menu options of SDE2 plug-in 155
SDE2 main menu options 156
SDE2 toolbar options 156
Environment variable setting option 158
Changing an environment variable 159
Changing an environment variable 162
Saving environment variables set to a file 163
Console view when a component is built using context-based drop-down menu on makefile. 164
Navigate the sources with the indexed syntax errors obtained during SDE2 build 165

Glossary 166
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 ii of ii

Introduction 1
Prerequisites 1
Tools and Softwares Required 1
Purpose and Scope 2
Directory Structure 2
SDE2 basic principles 3

Tutorial 5
Overview 5
Creating a component 5
Obtaining a unique component name 5
Creating the directory structure 5
Creating the source and header files 6
Creating a makefile 6
Building a component (library) 7
Building an image (executable) 8

Reference Manual 10
Common directory structure 10
inc directory 11
sde directory 11
project directory 11
install directory 11
comps directory 12
intfs directory 13
apps directory 13
Component names 13
Interfaces 14
Platform-specific source files 14
Libraries location 15
Executables location 17
Configurations 17
Selecting a configuration 17
Configuration check 23
Compilation in a WinCE 3.00 Environment 26
Compilation in a R.E.A.L. environment 27
Compilation with VxWorks OS 27
Building executables for mips_psos 28
Identifying the configuration of libraries and executables 28
Standard precompile flags and tmFlags.h file 29
Compile and link options 33
Project-wide compile options 33
Component-specific compile options 33
File-specific compile options 34
Link options 34
Include directories 34
Debug, assert, trace and retail libraries 35
Warning levels 36
Diversities 36
Component diversity 37
Extend the makefile with a _TMDIVERSITY selection 37
Use diversity.mk 38
Recursive make 39
Complex interface diversity 40

NXP Semiconductors UM SDE2 2.3
Appendix : Contents
Run-time diversity 40
BSP diversities 41
Dynamic link libraries (DLLs) 42
Generation 42
DLL generation options 43
DLL directory structure 43
Usage 44
C++ support and DLLs 45
Suppressing DLLs 45
Libraries and the LIBS section 45
How is the LIBS section used? 46
DependsOn relation 46
Overriding default diversities and *.l files 47
Missing *.l file(s) 49
Promotion of the interface 49
Replacing the libraries and DLLs 49
SDE_in_SDE 50
Example component structure for SDE_in_SDE 50
Rules for SDE_in_SDE 51
Defining SDE_in_SDE in your makefile 52
SDE_in_SDE and gmake clean 56
Multiproject SDE2 56
Multiproject implementation in SDE2 57
Practical recommendations for using multiproject SDE2 59
Binary release 59
Generation 60
Binary release for libraries and DLLs 60
Binary release for the object files 60
Using a binary release 61
Using a binary release for libraries and DLLs 61
Using a binary release for object files 61
Advantages of a binary release approach 62
IDL support in SDE2 62
Interface Definition Laungage (IDL) 62
Location of the IDL files 63
Usage 63
Binary Release of IDL-Guid files 64
Qmore invokation from SDE2 65
SDE2 Perl Scripts 66
Perl 66
Build scripts overview 66
Build.pl 67
Input of the script 67
Component configuration files 68

The overall configurations.txt file 70
Invoking build.pl 71
Output of the script 71
Build_exe.pl 72
Two iteration process with build_exe.pl 72
Mixing debug/assert/retail/trace diversities and build_exe.pl 73
Output of the script 74
Requires.pl 75
Auto-detection script (auto_det.pl) 75
Makefile Template Script (makefile_template.pl) 76
Script to generate diversity.mk file (generate_diversity_mk.pl) 79
Script to display the diversity information(application_diversity.pl) 79
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 iv of vii

NXP Semiconductors UM SDE2 2.3
Appendix : Contents
Script to find trailing white spaces (findtrailingspaces.pl) 80
Setting environment variables of SDE2(setenv.bat) 80
EnvCreate.pl 80
AutodetExecute.pl 81
Build flavors 81
Dependency generation 81
Copying objects into the release directory 81
Build diagnostics 82
Memory image build support 82
Debugging with SDE2 82
Debugging tools and SDE2 82
Using source files outside the component 82
User-defined variables 83
Third-party software 83
Use of inline qualifiers 83
Other targets 84
SDE2 warning messages 84
Circular dependencies 84
The loc_list files 84
Component makefile manual 85
Structure 85
Component name and include environment.mk 85
C, C++ and ASM source files 85
REQUIRES section 86
Recursive closure of REQUIRES section 86
Third-party software and non default include directories 86
Libraries and DLLs 86
EXPORTS variable 87
Setting the diversity 87
Local C, C++, LD, and TMTGT Flags 88
Auto-documentation 88
Target(s) 88
Makejava, makelib or maketarget 89
Different file specific compiler settings 90
The += assignment 90
Tables of all environmental and makefile variables 90
Component diversity.mk 99
Reliable development with SDE2 100
Tables of all examples included in the product 101
User Configurable New CPU/OS Type 103
New third party toolset integration 104

System C support in SDE2 105
Introduction to System C 105
Supported Configurations 105
Cadence-NcSc System C support - HW Modeling (x86ncsc_nullos) 105
OSCI System C support 106
Cadence-NcSc System C support - NxBuilder Support 106

Installation and Customization 107
Installation 107
Customization 107
Required tools 107
Permissions 109
Tuning the SDE initialization script 110
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 v of vii

NXP Semiconductors UM SDE2 2.3
Appendix : Contents
Tuning linux.mk 110
Tuning cygwin.mk 111
Tuning prjlist.txt 111
Tuning sde directory 112
SDE2 on cadenv 112
Installing SDE2 on cadenv 112
User specific customizations 113
SDE2 cadenv wrapper scripts 114
Other software tools that are required in cadenv 114
SDE2 and CMSynergy 114

Java Building 116
Quick start 116
Java implementation 118
Relevant problem aspects 118
Java cross-compilation 118
Java compilation class path 118
Implementation principles 119
Implementation limitations 119
Implementation approach 119
User-configurable variables 120
Internal SDE2 variables 122
javac class and source file search mechanism 122

Assembler Support 124
Using assembler source files with SDE2 124

Visual Studio Integration 125
Setting up your component's directory structure 125
Starting the component's Visual C++ project 126
Building the DVP2 component from within the Developer Studio 127
Customizing MSDEV to call the build scripts 127
Error parsing 128
Using code browse information 129
Building DVP1 component browse information 129
Building DVP2 component browse information 129
Using DVP2 component browse information 130

Autodocumentation 132
Doxygen overview 132
Creating documentation from the component directory 132
User documentation 133
Design documentation 133
User configurable Auto Documentation variables 134

Autodocumentation - Docjet 139
Docjet overview 139
Creating documentation from the component directory 139

Make Utilities and Cygwin 141
GNU make utility 141
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 vi of vii

NXP Semiconductors UM SDE2 2.3
Appendix : Contents
Cygwin utility 141
Shells 141
Network 142
Implicit rules 142

Concept of SDE2 (makefile) structure 143
SDE2 organization 143
The maketarget<_TMBSL>.mk files 145

(PC)Lint support in SDE2 147
Lint Support in SDE2 147

Adding a Configuration Class 148
Adding a configuration class 148

QAC 149
QAC overview 149
QAC and SDE2 149
Running qac on components 149
gmake qac 150
gmake qacref 150
gmake qacdiff 150
Running QAC on selected header files 150

Eclipse Integration 151
Eclipse overview 151
Eclipse and SDE2 151
Installation of SDE2 and Eclipse plugin 151
Installation and working Procedure 152
Adding project into Eclipse 153
SDE2 menus 154
Context-sensitive menu 154
SDE2 main menus 155
SDE2 toolbar options 156
SDE2 help menus 157
Change of environment variables 158
Changing an Environment variable 159
Selecting an Environment variable not listed 160
Loading Environment from an SDE2 initialisation file 162
Saving environment variables set to a file 163
Display of build output 163
Console view 164
Problems view 165
Outline view 165

Glossary 166
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 vii of vii

Introduction 1

Tutorial 5

Reference Manual 10
Configuration classes and their environment variables 18
Additional environment variables per configuration class 23
Additional environment variables for System C components 24
 24
The generic environment variables 24
#define variables that can be queried directly 30
Variables set by SDE2 for the compiler 33
The 3 release modes and their characteristics 35
Standard makefile per configuration class 42
Variables for external target configuration 91
Variables for external environment configuration 92
Variables for any makefile 93
Variables for library makefiles 94
Variables for executable makefiles 94
Makefile variables used in SDE2 94
 98
SDE2 examples 101

System C support in SDE2 105

Installation and Customization 107
PC environment tools required by and delivered with SDE2 107
Tools required by but not delivered with SDE2 108
Tools required by but not delivered with SDE2 for System C Components 109
 109
Overview of changeable parts of SDE2 109
Standard initialization scripts of SDE2 110
Tools that are set by linux.mk and cygwin.mk 111

Java Building 116
Required and/or customary variables needed to build in Java 120
Optional Java makefile variables 121
Internal SDE2 variables 122

NXP Semiconductors UM SDE2 2.3
Appendix : Tables
Assembler Support 124

Visual Studio Integration 125

Autodocumentation 132

Autodocumentation - Docjet 139

Make Utilities and Cygwin 141

Concept of SDE2 (makefile) structure 143
The SDE2 variables that are relevant for maketarget<bsl>.mk 146

(PC)Lint support in SDE2 147

Adding a Configuration Class 148

QAC 149

Eclipse Integration 151

Glossary 166
Frequently used terms and abbreviations 166
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 ix of ix

NXP Semiconductors UM SDE2 2.3
Appendix : Introduction
What is covered in this chapter?

This chapter provides you with basic background information about SDE2, including:

• Description of the SDE2 directory structure

• Explanation of the basic principles of SDE2

1.1 Prerequisites

This manual assumes you are familiar with:

• C programming language

• Perl programming language

• Makefiles

• gmake

For more information about gmake see:
http://www.gnu.org/manual/make/html_mono/make.html

Please familiarize yourself with the terms and abbreviations in the Glossary before
reading this manual.

1.1.1 Tools and Softwares Required

SDE2 requires the following tools and softwares installed on the system, other than the
compiler toolsets

• Perl - The latest version can be downloaded from:
http://www.perl.com/download.csp

• Cygwin (for windows hosts only)- SDE2 delivers cygwin for windows users along with
the release. However, the latest version of cygwin can be downloaded from:

http://www.cygwin.com/

• GNU make (gmake) - SDE2 delivers gmake for windows users along with the
release. Other users can download the latest version of gmake from:

http://directory.fsf.org/GNU/make.html

• Doxygen and Graphviz - SDE2 users who need to generate Auto Documentation can
download Doxygen and Graphviz from:
Doxygen - http://www.doxygen.org/ or http://www.stack.nl/~dimitri/doxygen/

Graphviz- http://www.graphviz.org/

Chapter 1
Introduction
User Manual Version 3.8 Sep 29, 2006
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 1 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Introduction
1.2 Purpose and Scope

SDE2 is a MoReUse-compliant software development environment created for use by
both NXP Semiconductors developers and external customers. SDE2 allows you to:

• Build for multiple configurations

• Integrate third-party tools at build time

• Build binary releases

• Create reusable software

SDE2 is a generic, integrated and MoReUse compliant software build environment for the
production of reusable software IPs and systems.

The term generic in the context of build implies the support for multiple configurations.
The term integrated in the context of build implies the support for integrating 3rd party
tools.
Ther term production means the support for producing binary releases.
The term reusable means the support for reusable software development.

The above common approach enables better reuse of each other’s software components.
In this context, SDE2 is a MoReUse compliant directory structure with supporting
makefiles and build scripts. These supporting makefiles execute dependency checking,
compilation and linking for a variety of platforms and a variety of compilation hosts. The
makefiles are executed using GNU Make. SDE2 supports four host platforms:
PC/Windows and Linux.

SDE2 supports component-based working for C/C++, System C and Java environments.

SDE2 is compliant with the directory structure, file names and rules of MoReUse1, see
[MoReUse] MoReUse 3.1 Standards Book in the bibliography.

1.3 Directory Structure

SDE2 and MoReUse implement a flat directory structure. This decision was made
because:

• Directory structure is independent of owner, project, and architecture.

This makes components more re-usable (outside the scope of their development
environment). An architectural split could be along several axes: functional grouping
(infra, gfx, video, audio, mux-demux, storage) or along layering (hwapi, devlib, tssa,
sub-systems).

• All visible components are separately released.

There are many choices, and it is not always clear where a component belongs in
architecture (tuner, psi-database, html-renderer). Components are released as entity.

1. MoReUse standards have been defined for C/C++ software. They have not yet been defined for Java. In SDE2, the same
approach is used for Java sources as for C/C++ sources with minimal differences.
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 2 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Introduction
• The SDE2 can easily find the interface of components, and can thus enforce certain
rules.

The rules the SDE enforces are of strict interfacing. A component is required to
explicitly state its dependencies on other components, and the SDE can enforce this.

Drawbacks of a flat directory structure can be:

• Too many components in one directory.

It is unlikely that within a project there are, for example,100 components. This would
be a lot to have in one directory, but by using different prefixes (tm2d, tmdl) there is
some layering or subsystem grouping.

• Lost clarity due to hierarchy (sub-systems would like to have encompassed
components below them in one component).

This argues that the components are not real components in the sense that they have
their own life cycle (independent of the subsystem life cycle). When this happens, it is
argued that the encompassed components are not really components in terms of
SDE2. The subsystems are then the component and beneath this component the
developer is free to choose the directory structure.

However SDE2 supports two extensions of the flat directory structure – multiproject
development (you have multiple comps directories) and SDE_in_SDE (you have
subcomponents in your src directory). These extensions do not contradict to the flat
directory structure, you can always put all your components in one comps directory.

1.4 SDE2 basic principles

SDE2 is an associated product of SoCDT/LIPP’s MoReUse Program. It implements the
recommended software development approach for the software development community
of NXP Semiconductors. It offers an off-the-shelf, MoReUse-compliant directory structure,
with supporting makefiles and scripts.

When a user installs SDE2, it automatically creates the required directory structure and
hence, any component developed and built with SDE2 environment will have the
MoReUse directory structure.

The basic aim of SDE2 is to enable the creation and delivery of reusable software
components, which can be used across different target platforms without any changes. A
source component can be built for different platforms or configurations, by setting a
corresponding set of platform-specific environment variables in the host environment.

SDE2 defines a configuration as a specific combination of CPU class, OS class and build
toolchain. This is accomplished in the following ways:

• A user can develop reusable components for a particular configuration. This
component can be reused across different development sites with out making any
changes to the component itself. The user needs to release only the component.

• A user can develop reusable components for multiple configurations, by properly
organizing the configuration-specific parts of the source code separately. These
components are also reused across different development sites for different
configurations.

• SDE2 will generate libraries and DLLs, whose names are MoReUse-compliant.

STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 3 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Introduction
SDE2 also facilitates compilation and linking of component source code and provides the
following facilities to the user:

• A user can define and use his/her own component or interface.

• A user can develop a component in a modular and independent way. A component is
open to the external world only by its name and interfaces (public header files).
Hence, these components are easily reusable in other applications (which require
this component) just by addressing their interfaces.

• A user can build a complete application (executable), without knowing about the
components required to build that application. SDE2 automatically builds all required
components (in correct order) and then builds the application.

• A user can completely build a component for all specified configurations of the
project.

The procedures and methodologies for the above features are explained in the
subsequent sections of the SDE2 User Manual.
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 4 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Tutorial
What is covered in this chapter?

This chapter describes how to complete basic tasks such as compiling libraries and
images, using an enclosed example, including:

• Creating and naming components

• Creating the directory structure

• Creating source and header files, and a makefile

• Building libraries and executables

2.1 Overview

This chapter is a tutorial for SDE2. We provide a short example to demonstrate SDE2.
From a developer’s point of view, the SDE2 is a directory structure you can put your
software in. Using the SDE2 you are able to build your software for a variety of platforms.

In SDE2, 18 example components and two interfaces are provided. These components
demonstrate different approaches to build libraries, DLLs, JARs and executables.

For the tutorial, the following is assumed:

• The SDE2 is installed on your PC or workstation

• At least one compiler is available (our example uses the TriMedia compiler)

• At least one software component is available in SDE2 (our example uses the
component Comp1).

2.2 Creating a component

Creating a component is a standard procedure. The following section explain the
necessary steps.

2.2.1 Obtaining a unique component name

Register your component on the MoReUse web site; for more details read Section 3.1.8,
Component names on page 13.

2.2.2 Creating the directory structure

After creating the tm<your component name> directory in the main comps directory, you
have to create its subdirectories and files. This includes the inc, src, docs, tst
subdirectories, makefile and configurations.txt files. More information about the directory

Chapter 2
Tutorial
User Manual version 3.8 Sep 29, 2006
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 5 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Tutorial
structure can be found in Section 3.1, Common directory structure on page 10, and in
[MoReUse] MoReUse 3.1 Standards Book in the bibliography. Put public header files in
the inc directory and source and private header files in the src directory. Generally, your
directory structure should look like the structure below

2.2.3 Creating the source and header files

This section contains simple example files for src and inc directories, that together form
the C-part of a component.

The source file src/tmComp1.c containing the implementation of the interface is as follows:

Directory src contains source files and non public header files.

The file inc/tmComp1.h containing the public interface of the component Comp1 is as follows:

The directory inc contains the public interface.

2.3 Creating a makefile

All component makefiles have a similar structure but there are some differences. They all
are using some environment and makefile variables.

Figure 2-1: Structure of tm<your component name> directory

/* This is tmComp1.c */
#include "tmComp1.h"
#include <stdio.h>

void tmComp1_Print(int i)
{

printf("This is component 1, printing value %d\n", i);
}

/* This is tmComp1.h */
#ifndef TMCOMP1_H
#define TMCOMP1_H
extern void tmComp1_Print(int i);
#endif
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 6 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Tutorial
Every tutorial book starts with a simple Hello world example. Our component Comp1 is such
an example. This is its makefile:

This is a simple component, it contains only the src/tmComp1.c source code and no
diversities (see Section 3.5, Diversities on page 36 for more information). It has two
targets. The configuration target is mandatory; it sets the configuration. The lib target builds
the library.

The first line must contain the location of the component:
DIR_LOCAL= comps/tmComp1

The second line includes a file environment.mk that contains a number of settings that are
general for the installation (i.e., independent of the component).

The following lines list the source files of the component; CXX stands for C++.

If we build a library, we have to add a lib target in all targets.

After all the component settings are completed, we call the platform-specific makelib.mk file.
This file takes care of making the libraries.

The makefile contains other relevant lines (These lines are typically modified when
executing a makefile for a new component). If a component requires other component
interfaces, you can use the line below to indicate that. If Comp1 required the tmosal and tmml
interfaces you would see the following line:
REQUIRES = tmCom tmCommMgr

If your component calls functions from another component, you must have line like this:
LIBS = tmCopyIO tmAencAc3

More information about makefiles can be found in Section 3.15, Component makefile
manual on page 85 and elsewhere in Chapter 3.

2.4 Building a component (library)

When we make our component tmComp1, the build environment can be initialized. We
open a shell (DOS or UNIX/Linux) to execute an initialization script. A default script named
tm_psos_debug_static_el_tm32_winnt_default.bat is included in project/sites/<site>. The
directory <site> contains site-specific information about SDE2. With SDE2 delivery,

DIR_LOCA L= comps/tmComp1
include $(_TMROOT)/sde/environment.mk
CXX_SOURCES =
C_SOURCES = src/tmComp1.c
all: configuration lib
ifneq ($(DIR_CONFIG),_)
include $(DIR_SDE)/$(DIR_CONFIG)/makelib.mk
endif

CXX_SOURCES =
C_SOURCES = src/tmComp1.c
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 7 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Tutorial
there is a part with exemplary files in the <site> directory called blrsdm. See Section
5.2.3, Tuning the SDE initialization script on page 110 for information about making your
site-specific initialization script.

The script sets some environment variables indicating the location of the compilers and so
on. Some variables also indicate the build flavor2.

The tmComp1 directory contains a makefile that specifies how the component is built. The
makefile lines are like the lines in the Hello world–type example in Section 2.3, Creating a
makefile on page 6 with additional comment lines.

When the makefile is executed by typing make (or gmake for UNIX), the result is the creation
of the following directory structure. The root location of the directory structure is
configurable and depends on an environment variable _TMTGTBUILDROOT, (set in one of
the batch files from sde_template/project/sites/<your site> directory, for
example, the tm_psos_debug_static_el_tm32_winnt_default.bat script).

When _TMTGTBUILDROOT contains for example, Build_Directory, the directory structure will
be as follows:

More information about the library directory structure can be found in Section 3.1.11,
Libraries location on page 15.

2.5 Building an image (executable)

Building an image, for example a test application, is not much different from building a
component. The difference is in the makefile. The image makefile always contains all
first-level used libraries, the libraries with functions are directly called from the executable:
LIBS = tmComp1

The order of libraries is significant for UNIX-like linkers such as mips_psos, but SDE2
accounts for this. In the image-makefile there are also the following specific lines (in
italics):

2. ‘Flavor’ is a property of a buildable object that can be separately defined. More information regarding flavors can be found in
sections Section 3.5.1 and Section 3.13.

Figure 2-2: Structure of Build_directory

TARGET = test
all: configuration target
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 8 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Tutorial
An example makefile of a simple executable that tests the component Comp1 can be found
in comps/tmComp1/tst/Tst1 of the SDE2 distribution. After executing the makefile, the
following structure is created:

The test.out file is a debug executable that can be downloaded on your TriMedia board.

ifneq ($(DIR_CONFIG),_)
include $(DIR_SDE)/$(DIR_CONFIG)/maketarget$(_TMBSL).mk
endif

Figure 2-3: Structure after executing the makefile
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 9 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
What is covered in this chapter?

This chapter contains comprehensive reference material about SDE2, including:

• Description of the common directory structure

• Selecting and identifying configurations

• Precompile flags and compile options

• Diversities

• Dynamic Link Libraries (DLLs)

• Transitive closure of libraries

• SDE-in-SDE

• Multiproject SDE2

• Generating binary releases

• Build scripts and flavors

• Component makefile manual

3.1 Common directory structure

SDE2 is component-based. A software component contains source files (including private
header files), public header files (the API of the component), documentation, libraries, and
test applications or executables. A software component that binds together other
components (also called subsystems) is also a component and is treated in the same way
as other components.

The SDE2 root directory contains the following directories:

• inc

• sde

• project

• install

The following directories are typically placed in the SDE2 root directory, however they
may be placed in another location in case SDE2 is used in multiproject mode (see Section
3.9.1, Multiproject implementation in SDE2 on page 57).

• comps

• intfs

Chapter 3
Reference Manual
User Manual Version 3.8 Sep 29, 2006
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 10 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
• apps

The directories are explained in more detail below.

3.1.1 inc directory

The inc directory contains information that is applicable to all components. Types of
information are:

• Global include files, such as tmNxTypes.h, tmSystemFormats.h, tmAudioFormats.h,
tmVideoFormats.h, tmCompId.h, and tmAvFormats.h. The old tmtypes.h is no longer supported.

• Platform-specific directories such as mips_psos, tm_psos, x86_nt, cfg.

Do not modify the inc directory, see [RULES] MoReUse Rules Document. You can
modify the configuration files in its subdirectories.

3.1.2 sde directory

The sde directory contains generic makefiles. Usually, it is not necessary for developers
to know anything about the structure of this directory. Do not modify this directory. If you
find something that needs to be changed, submit a change request to the SDE2 CCB, see
[MoReUse] MoReUse 3.1 Standards Book. External SDE2 users should raise change
requests through their contacts within NXP Semiconductors

3.1.3 project directory

The project directory contains the following files:

• configurations.txt – Contains all buildable configurations; see Section 3.13.3.3, The
overall configurations.txt file on page 70 for more details.

• buildlist.txt – Contains the list of all components that have to be built.

• prjlist.txt – Contains all required project directories, separated by spaces. For details
see Section 3.9.1, Multiproject implementation in SDE2 on page 57.

The files loc_list.txt and loc_list.mk are derived from prjlist.txt. These files have been placed in
the release directory since SDE2 version 1.2. For more information, see Section 3.9,
Multiproject SDE2 on page 56.

3.1.4 install directory

The install directory contains the files required for installting SDE2 in cadenv
environment. Following are contents of this directory:

• sde2_cadenv.hlp- cadenv helpfile

• sde2_cadenv.rel- cadenv release file

• sde2_cadenv.installnotes.txt- cadenv SDE2 installation notes

• sde2_cadenv.releasenotes.txt- cadenv SDE2 release notes

• sdebuild- wrapper script for build.pl

• sdedoc- wrapper script for reading SDE2 documents
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 11 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
• sdebuild_exe- wrapper script for build_exe.pl

• sdemake- wrapper script for gmake

Please refer to Section 5.3, SDE2 on cadenv on page 112 for more information on cadenv
support in SDE2

3.1.5 comps directory

All components are stored in the comps directory. This is the place to add new
components. Restrictions and procedures regarding component names are described in
Section 3.1.8, Component names on page 13.

Figure 3-1 illustrates the internal structure of the comps directory for the component
Comp1.

The src directory contains the source files and private header files. You can structure the
src directory in any way. A specific structure in the case of a component with
implementations on more than one platform, is suggested in Section 3.1.10,
Platform-specific source files on page 14.

The cfg directory is optional. It contains configurational source and header files. These
files are delivered with the binary release and the user can reconfigure and recompile his
library files.

The inc directory contains the public header files of the component. The contents of the
public header files form the public API of the component. The public header files should
not have includes of other header files except for tmNxTypes.h, tmSystemFormats.h,

Figure 3-1: Internal structure of the comps directory
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 12 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
tmAudioFormats.h, tmVideoFormats.h, tmCompId.h and/or tmAvFormats.h. In this way large include
trees are avoided, which shortens compilation time, and improves independent
deployment of the components.

The docs directory contains the documents about the component. The documents are
organized in the categories according to the development phases as specified in the
Business Creation and Management Process document [BCaM]
http://pww.cto.sc.philips.com/bcam-processes/

The TstX (in the example X = 1 or X = 2) directories contain the test application sources
for the component. When a component contains more than one test application, separate
directories beneath the tst directory need to be made for each test application.

During the build process, we build all libraries in the release lib directory. The optional
component lib directory is a copy of the originally generated lib directory.

3.1.6 intfs directory

See Section 3.1.9, Interfaces on page 14.

3.1.7 apps directory

The apps directory contains applications (executables) that use more than one
component. Applications are like test programs. However they are beyond the scope of
one particular component. The apps directory typically contains the nonreusable part of a
software system.

Summarizing, SDE2 describes a directory structure for a component-based way of
working. The structure of the non project-specific directories comps, inc, and intfs are
important from a reuse point of view and should be the same for all projects that generate
MoReUse-compliant software components.

3.1.8 Component names

Component names must consist of letters (a..z, A..Z) and digits (0..9) only. Other
characters (underscores, hyphens etc.) are not allowed. Component names must begin
with a capital (A..Z). A main directory of a component is named after the component with
the prefix tm and after the layer’s name, if present. You can find registered layer names in
[MoReUse] MoReUse 3.1 Standards Book . Sometimes the component name (e.g.,
tmComp4, tmdlComp5) is used in this document instead of the real component name (e.g.,
Comp4, dlComp5), to provide a generic example of the name.

To avoid name clashes, each component must have a unique component name and a
unique component ID (used in its return status, see [MoReUse] MoReUse 3.1 Standards
Book). Read the Rules document [RULES] MoReUse Rules Document and request a
unique component name on the MoReUse site at:
http://pww.cto.sc.philips.com/products/reuse_standards/html/component_names.html.

All components should be registered using the MoReUse web site.
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 13 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
3.1.9 Interfaces

The intfs directory contains interfaces (public header files) that are implemented by
multiple components. This is useful when your project uses an interface-based way of
working. In that case you can specify an interface and have, for example, two components
that implement this interface. To avoid one interface definition being located at two places
(the inc directories of the two components implementing the interface), the header files
are located at a central place outside the scope of a particular component, the intfs
directory. Defining interfaces and using them across various implementations implies that
interfaces must be stable as soon as a first implementation exists. Do not modify this
directory, see [RULES] MoReUse Rules Document. Figure 3-2 shows the structure of the
intfs directory.

Each interface name starts with I. The intfs directory possesses its own directory with
the subdirectories idl, inc, src and docs.

The src directory contains proxy and stub modules that are used when
the component is present on another computer.

The idl directory optionally contains the interface definition language (idl) description
file(s) of the interface.

The inc directory contains the header file(s) of the interface.

The docs directory contains documentation describing the interface.

To avoid name clashes, each interface must have a unique interface name and a unique
interface ID (used in its return status, see [MoReUse] MoReUse 3.1 Standards Book).
Read the Rules document [RULES] MoReUse Rules Document and request a unique
interface name on the MoReUse site at:
http://pww.cto.sc.philips.com/products/reuse_standards/html/interface_names.html.

For more about the promotion of the interfaces, see Section 3.7.5, Promotion of the
interface on page 49.

3.1.10 Platform-specific source files

Sometimes, a component contains different source files for different configuration classes.
This chapter describes the recommended way of working in this situation.

Figure 3-2: Structure of the intfs directory
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 14 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
The platform-independent software is usually put in the main source directory (src). By
using the environment variables _TMTGTCPUCLASS and _TMTGTOSCLASS in your makefile,
you can select the source files for platform-specific software, for example,

The file tmComp7PlatformSpecific.h contains the (generic) prototypes of the functions that have
platform-specific implementations.

In the makefile, the sources are defined as follows:

This approach works only if the source files have the same names in all directories.
Otherwise you should use the defines from tmFlags.h. (See Section 3.3, Standard
precompile flags and tmFlags.h file on page 29.)

3.1.11 Libraries location

The library structure is based on [MoReUse] MoReUse 3.1 Standards Book. In this
section the following aspects are described:

• Library directory location

• Location of DLL files

• Location of JAR files

Figure 3-3: Example using platform-specific source files

C_SOURCES=\
src/ tmComp7Generic.c \
src/$(_TMTGTCPUCLASS)_$(_TMTGTOSCLASS)/tmComp7PlatformSpecific.c
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 15 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
If _TMTGTBUILDROOT is not empty, the library directory structure is a subdirectory of
_TMTGTBUILDROOT as follows:

If _TMTGTBUILDROOT is undefined or empty the library directory structure is a part of the
SDE2 comps directory (next diagram).

The tmp directory is a subdirectory of the specific component’s root directory. It contains
the intermediate results when building is done for the component Comp1. It contains object,
dependency and option files. The generated directory is a subdirectory of the comps
directory.

The overall directory structure when _TMTGTBUILDROOT is undefined or empty is shown
below:

Figure 3-4: Library directory structure if _TMTGTBUILDROOT is not empty

Figure 3-5: Library directory structure if _TMTGTBUILDROOT is undefined or empty
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 16 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
If the environment variable _TMTGTCOPYLIB is set to 1, the lib tree is copied to the
component-specific directory (in this case to comps/tmComp1/lib).

The complete library location path is given in Section 3.2.3, Identifying the configuration of
libraries and executables on page 28.

DLLs are treated like static libraries; they are placed in the subdirectory of the release
library directory. If found in this location, a DLL is used during the link process, otherwise a
static library is used. All of the operations described above for libraries are valid for DLLs
too. The only differences are DLL names, they are described in Section 3.6, Dynamic link
libraries (DLLs) on page 42.

The JAR (Java Archive Class) files are located in the lib/jar subdirectory. They are the
same for all platforms, so they are platform-independent. For more about them you can
read Appendix A.

The main purpose of this directory structure approach is that you can deliver the whole
component to the customer without additional operations.

The lib directory contains a subdirectory tm_psos_el_tm32. Then directory name
indicates that this subdirectory contains TriMedia32-pSOS little-endian libraries. The
name of the generated library ends with _g indicating that this is a debug library. Besides
the debug mode, there are also assert, retail and trace modes. See Section 3.4.6, Debug,
assert, trace and retail libraries on page 35.

3.1.12 Executables location

The test executables (called also tests, executables) location path is given in, Identifying
the configuration of libraries and executables.

The temporary and intermediate files for the executables build are stored in
<_SDE_TMTGTBUILDROOT>/comps/<component>/tst/<test name>/tmp directory,
where _SDE_TMTGTBUILDROOT is equal to _TMTGTBUILDROOT if it is defined. Otherwise it is
equal to _TMROOT.

3.2 Configurations

Libraries and executables can be built for different configurations. Configurations are
defined by endianness, CPU-type, operating system, and so on. The next two sections
describe how to select and identify a configuration.

3.2.1 Selecting a configuration

Before invoking make or gmake for a component or executable, SDE2 must be initialized,
i.e., some environment variables must be set to indicate the target build. Table 3-1 shows
the four main environment variables and their possible values/combinations. The
_TMTGTOSCLASS, _TMTOOLCHAIN and _TMTGTCPUCLASS variables form the so-called
configuration class. As a rule, they do not contain capitals (only small letters and
numbers). Each configuration class corresponds to a certain tool set. If the
_TMTOOLCHAIN is undefined, a default toolchain value would be used for that particular
configuration. This default toolchain value would be extracted from default_toolchain.mk file.
Any new configuration defined from now onwards should contain _TMTOOLCHAIN value.
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 17 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
Example: The configuration class mips_psos corresponds to the ISI Diab Data tool set and
supports the Diab data compiler.

Table 3-1: Configuration classes and their environment variables
Configuration class General environment variables and their values

8051keil_nullos
8051 Keil compiler

_TMTGTOS=nullos
_TMTGTOSCLASS=nullos
_TMTGTCPUTYPE=8051
_TMTGTCPUCLASS=8051
_TMBSL=
_TMTOOLCHAIN=keil

arm_ce
WinCE compiler
default toolchain - ms

_TMTGTOS=ce300
_TMTGTOSCLASS=ce
_TMTGTCPUTYPE=arm720
_TMTGTCPUCLASS=arm
_TMBSL= or _TMBSL=_dvp1

arm_cexec
arm ads compiler
default toolchain - ads

_TMTGTOS=cexec
_TMTGTOSCLASS=cexec
_TMTGTCPUTYPE=arm7, arm920t, arm922t, arm940t, arm10, strongarm,
arm926EJS, arm946
_TMTGTCPUCLASS=arm
_TMBSL=

arm_nullos
ARM-ELF-GCC for Linux
default toolchain - gnu

_TMTGTOS=nullos
_TMTGTOSCLASS=nullos
_TMTGTCPUTYPE=arm7, arm920t, arm940t, arm10, strongarm,
arm926EJS, arm946
_TMTGTCPUCLASS=arm
_TMBSL= or _TMBSL=_dvp1
_TMTOOLCHAIN=

arm_vxworks
Tornado toolchain for arm
default toolchain - trnd

_TMTGTOS=vxworks540, or vxworks
_TMTGTOSCLASS=vxworks
_TMTGTCPUTYPE=arm7, arm920t, arm922t, arm940t, arm10, strongarm,
arm926EJS, arm946
_TMTGTCPUCLASS=arm
_TMBSL= or _TMBSL=_dvp1

armads_nucleus
arm ads compiler

_TMTGTOS=nucleus
_TMTGTOSCLASS=nucleus
_TMTGTCPUTYPE=arm7, arm920t, arm922t, arm940t, arm10, strongarm,
arm926EJS, arm946
_TMTGTCPUCLASS=arm
_TMBSL=
_TMTOOLCHAIN=ads

armads_nullos
arm ads compiler

_TMTGTOS=nullos
_TMTGTOSCLASS=nullos
_TMTGTCPUTYPE=arm7, arm920t, arm922t, arm940t, arm10, strongarm,
arm926EJS, arm946, arm720
_TMTGTCPUCLASS=arm
_TMBSL= or _TMBSL=_dvp1
_TMTOOLCHAIN=ads
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 18 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
armads_ucos
arm ads compiler

_TMTGTOS=ucos
_TMTGTOSCLASS=ucos
_TMTGTCPUTYPE=arm7, arm920t, arm922t, arm940t, arm10, strongarm,
arm926EJS, arm946, arm720
_TMTGTCPUCLASS=arm
_TMBSL= or _TMBSL=_evaluator
_TMTOOLCHAIN=ads

armghs_nullos
arm GreenHills compiler

_TMTGTOS=nullos
_TMTGTOSCLASS=nullos
_TMTGTCPUTYPE=arm7, arm920t, arm922t, arm940t, arm10, strongarm,
arm926EJS, arm946, arm720
_TMTGTCPUCLASS=arm
_TMBSL=
_TMTOOLCHAIN=ghs

armghs_oscan
arm GreenHills compiler for osCAN

_TMTGTOS=nullos
_TMTGTOSCLASS=nullos
_TMTGTCPUTYPE=arm7, arm920t, arm922t, arm940t, arm10, strongarm,
arm926EJS, arm946, arm720
_TMTGTCPUCLASS=arm
_TMBSL=
_TMTOOLCHAIN=ghs

armgnu_linux
arm support for Linux target OS

_TMTGTOS=linux
_TMTGTOSCLASS=linux
_TMTGTCPUTYPE=arm7, arm920t, arm922t, arm940t, arm10, strongarm,
arm926EJS, arm946, arm966es, arm968es, arm1020e, arm1022e, arm1026ejs,
arm1156t2fs, arm1156t2s, arm1176jtzs, arm1176JTZS
_TMTGTCPUCLASS=arm
_TMBSL=
_TMTOOLCHAIN=gnu

armrvds_nullos
arm RealView compiler

_TMTGTOS=nullos
_TMTGTOSCLASS=nullos
_TMTGTCPUTYPE=arm7, arm920t, arm922t, arm940t, arm10, strongarm,
arm926EJS, arm946, arm1176jtzs, arm1176JTZS
_TMTGTCPUCLASS=arm
_TMBSL=
_TMTOOLCHAIN=rvds

armrvds_ucos
arm RealView compiler
This configuration changes are
specific to
(MST Nexperia Mobile Multimedia
BL Cordless & Imaging
BU Mobile Communications
NXP Semiconductors Sophia,
France)

_TMTGTOS=ucos
_TMTGTOSCLASS=ucos
_TMTGTCPUTYPE=arm7, arm920t, arm922t, arm940t, arm10, strongarm,
arm926EJS, arm946, , arm966es, arm968es, arm1020e, arm1022e, arm1026ejs,
arm1156t2fs, arm1156t2s, arm1176jtzs, arm1176JTZS
_TMTGTCPUCLASS=arm
_TMBSL=_PNX4002 or _osaltu
_TMTOOLCHAIN=rvds

hp_nullos
standard GCC for HP-UX
default toolchain - gnu

_TMTGTOS=nullos
_TMTGTOSCLASS=nullos
_TMTGTCPUTYPE=hp
_TMTGTCPUCLASS=hp
_TMBSL= or _TMBSL=_dvp1

Table 3-1: Configuration classes and their environment variables <Helv9R>(Cont’d.)
Configuration class General environment variables and their values
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 19 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
mips_ce
WinCE compiler
default toolchain - ms

_TMTGTOS=ce300
_TMTGTOSCLASS=ce
_TMTGTCPUTYPE=r3940, r4300, or r4640, or r4450
_TMTGTCPUCLASS=mips
_TMBSL= or _TMBSL=_dvp1

mips_nullos
default toolchain - gnu

_TMTGTOS=nullos
_TMTGTOSCLASS=nullos
_TMTGTCPUTYPE=r1910, r3940, r4300, r4640 or r4450
_TMTGTCPUCLASS=mips
_TMBSL=

mips_psos
(ISI Diab Data compiler)
default toolchain - diab

_TMTGTOS=psos250
_TMTGTOSCLASS=psos
_TMTGTCPUTYPE= r4300, r4640, 4450, r3940, r1910, r4450, 4kec, r4000 or
mips32
_TMTGTCPUCLASS=mips
_TMBSL=_p4032 or _TMBSL=_dvp1

mips_vxworks
Tornado toolchain for mips
default toolchain - trnd

_TMTGTOS=vxworks540, or vxworks
_TMTGTOSCLASS=vxworks
_TMTGTCPUTYPE=r3940, r4300, or r4640, or r4450
_TMTGTCPUCLASS=mips
_TMBSL= or _TMBSL=_dvp1

mipsghs_integrity
Green Hills compiler toolchain

_TMTGTOS=integrity
_TMTGTOSCLASS=integrity
_TMTGTCPUTYPE= 4kec
_TMTGTCPUCLASS=mips
_TMBSL=simr5000

mipsghs_nullos
Green Hills compiler toolchain

_TMTGTOS=nullos
_TMTGTOSCLASS=nullos
_TMTGTCPUTYPE= 4kec, 24kc, 24kf, 24kec, 24kef
_TMTGTCPUCLASS=mips
_TMBSL=generic

mipsgnu_ecos
mips support for eCOS OS

_TMTGTOS=ecos
_TMTGTOSCLASS=ecos
_TMTGTCPUTYPE=4kec
_TMTGTCPUCLASS=mips
_TMBSL=
_TMTOOLCHAIN=gnu

mipsgnu_linux
mips support for Linux target OS

_TMTGTOS=linux
_TMTGTOSCLASS=linux
_TMTGTCPUTYPE=r3940, r4300, or r4640, or r4450
_TMTGTCPUCLASS=mips
_TMBSL=
_TMTOOLCHAIN=gnu

real_mtos
Real DSP Compiler
default toolchain - ace

_TMTGTOS=mtos
_TMTGTOSCLASS=mtos
_TMTGTCPUTYPE=rd24120
_TMTGTCPUCLASS=real
_TMBSL= or _TMBSL=_dvp1

Table 3-1: Configuration classes and their environment variables <Helv9R>(Cont’d.)
Configuration class General environment variables and their values
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 20 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
real_nullos
Real DSP Compiler
default toolchain - ace

_TMTGTOS=nullos
_TMTGTOSCLASS=nullos
_TMTGTCPUTYPE=rd24120
_TMTGTCPUCLASS=real
_TMBSL= or _TMBSL=_dvp1

realsat_nullos
Saturn DSP compiler toolchain

_TMTGTOS=nullos
_TMTGTOSCLASS=nullos
_TMTGTCPUTYPE=rd16023, rd16024
_TMTGTCPUCLASS=real
_TMBSL=
_TMTOOLCHAIN=sat

tm_psos
Trimedia TCS compiler toolchain
default toolchain - tcs

_TMTGTOS=psos200, psos250 or psostm200
_TMTGTOSCLASS=psos
_TMTGTCPUTYPE=tm32, tm3260, tm1100, or tm1300
_TMTGTCPUCLASS=tm
_TMBSL= or _TMBSL=_dvp1

tmtcs_nullos
Trimedia TCS compiler toolchain
default toolchain - tcs

_TMTGTOS=nullos
_TMTGTOSCLASS=nullos
_TMTGTCPUTYPE=tm32, tm3260, tm3270, tm3271, tm1100, or tm1300
_TMTGTCPUCLASS=tm
_TMBSL= or _TMBSL=_dvp1

x86_ce
WinCE compiler
default toolchain - ms

_TMTGTOS=ce300
_TMTGTOSCLASS=ce
_TMTGTCPUTYPE=i486
_TMTGTCPUCLASS=x86
_TMTGTENDIAN=el
_TMBSL= or _TMBSL=_dvp1

x86_nt
Micro soft Developer Studio
default toolchain - ms

_TMTGTOS=nt4
_TMTGTOSCLASS=nt
_TMTGTCPUTYPE=i486
_TMTGTCPUCLASS=x86
_TMBSL= or _TMBSL=_dvp1

x86_vxworks
Tornado toolchain for x86
default toolchain - trnd

_TMTGTOS=vxworks540, or vxworks
_TMTGTOSCLASS=vxworks
_TMTGTCPUTYPE=i486
_TMTGTCPUCLASS=x86
_TMBSL= or _TMBSL=_dvp1

Table 3-1: Configuration classes and their environment variables <Helv9R>(Cont’d.)
Configuration class General environment variables and their values
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 21 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
SDE2 (2.1 onwards) also supports the following configurations for System-C support

Please refer to Chapter 4 for more information on System-C support in SDE2

x86ddk_nt
Microsoft DDK (Driver Development
Kit)

_TMTGTOS=nt4
_TMTGTOSCLASS=nt
_TMTGTCPUTYPE=i486
_TMTGTCPUCLASS=x86
_TMBSL=
_TMTOOLCHAIN=ddk

x86gnu_linux
x86 support for Linux target OS

_TMTGTOS=linux
_TMTGTOSCLASS=linux
_TMTGTCPUTYPE=i486
_TMTGTCPUCLASS=x86
_TMBSL=

x86gnu_nullos
default toolchain - gnu

_TMTGTOS=nullos
_TMTGTOSCLASS=nullos
_TMTGTCPUTYPE=i486
_TMTGTCPUCLASS=x86
_TMBSL=

Table 3-1: Configuration classes and their environment variables <Helv9R>(Cont’d.)
Configuration class General environment variables and their values

Configuration Class General environment variables and their values

hpncsc_nullos
Cadence-NcSc compiler toolchain
for NxBuilder Support

_TMTGTOS=nullos
_TMTGTOSCLASS=nullos
_TMTGTCPUTYPE=hp
_TMTGTCPUCLASS=hp
_TMBSL=
_TMTOOLCHAIN=ncsc

x86ncsc_nullos
Cadence-NcSc compiler toolchain
for Linux

_TMTGTOS=nullos
_TMTGTOSCLASS=nullos
_TMTGTCPUTYPE=i486
_TMTGTCPUCLASS=x86
_TMBSL=
_TMTOOLCHAIN=ncsc

x86osci_nullos
OSCI compiler toolchain for Linux

_TMTGTOS=nullos
_TMTGTOSCLASS=nullos
_TMTGTCPUTYPE=i486
_TMTGTCPUCLASS=x86
_TMBSL=
_TMTOOLCHAIN=osci

x86osci_nt
OSCI compiler toolchain on
Windows

_TMTGTOS=nt4
_TMTGTOSCLASS=nt
_TMTGTCPUTYPE=i486
_TMTGTCPUCLASS=x86
_TMBSL=
_TMTOOLCHAIN=osci
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 22 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
3.2.2 Configuration check

SDE2 would check for the wrong combination of CPUCLASS and CPUTYPE, OSCLASS
and OSTYPE set in the environment. Eg: If you set CPUCLASS and OSCLASS as x86 and
nt respectively, then set CPUTYPE as hp. SDE2 would throw an error message notifying
that hp is not of CPUCLASS x86. This is done by the sde/config_check.mk included in
sde/environment.mk file

Per configuration class, some extra environment variables have to be set as listed in the
following table, Table 3-2.

Note: Do not use spaces in the environment names on a WinNT host. Use DOS-compliant
names!

Table 3-2: Additional environment variables per configuration class
Configuration class Environment variables with explanations

8051keil_nullos KEILTOOLSET = <drive>:/keil

arm_cexec _ARMADSTOOLCHAIN=<drive>:/ARM/ADSv1_1/include

arm_nullos No configuration specific variables need to be set for arm_nullos

arm_vxworks WIND_HOST_TYPE=x86-win32
WIND_BASE=E:\Tornado
PATH=%WIND_BASE%\host\% WIND_HOST_TYPE%\bin;%PATH%

armads_nullos, armads_nucleus
armads_ucos, armrvds_nullos

_ARMADSTOOLCHAIN=<drive>:/ARM/ADSv1_1/include
GCPP=gcc (for assembler source code)

armgnu_linux, mipsgnu_linux,
x86gnu_linux

GCC_BASE=<path to installation of GCC>
GCC_PREFIX=<Cross compiler prefix>
GCC_VERSION=<GCC version being used>

armghs_nullos GHS=<drive>:/GHS/Arm401

armrvds_ucos No configuration specific variables need to be set for armrvds_ucos

hp_nullos
(Standard GCC for HP-UX)

No configuration specific variables need to be set for hp_nullos

mips_psos
(ISI Diab Data compiler)

ISIMIP: Location of isimip directory
LM_LICENSE_FILE: Location of license file
DIABLIB=%ISIMIP%/diab/4.3p5
PSS_ROOT=%ISIMIP%/pssmip.250
PATH=%ISIMIP%\licenses\bin\win32;
 %ISIMIP%\diab\4.3p5\win32\bin;%PATH%
PSS_BSP=%PSS_ROOT%/bsps/p4032
DFP=H or DFP=S (for executables only, default DFP=S)

mips_vxworks WIND_HOST_TYPE=x86-win32
WIND_BASE=E:\Tornado
PATH=%WIND_BASE%\host\% WIND_HOST_TYPE%\bin;%PATH%

mipsghs_integrity GHS_HOME=<drive>:/GHS/int504
_TMBSL=simr5000 (_TMBSL is a must for this configuration)

real_mtos COMPROOT=/real/v010100/RD24120
RCC_OPTIONS=

real_nullos COMPROOT=/real/v010100/RD24120
RCC_OPTIONS=

realsat_nullos No configuration specific variables need to be set for realsat_nullos
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 23 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
Table 3-3: Additional environment variables for System C components

Finally, there are some generic variables that need to be set for each configuration class,
see Table 3-5.

tm_psos TCS: Location of TriMedia directory
_TMTCSHOST: TriMedia host; Possible values: WinNT, nohost, tmsim
SDE2 supports both TCS 2.2 and TCS 4.2. Point TCS to TCS 4.2
installation.

All WinCE configurations:
arm_ce, mips_ce, x86_ce
(WinCE compiler)

Note: Italicized values are
available with the Microsoft
WinCE Platform Builder, but they
are unsupported in SDE2.

Note: See Section 3.2.2.1,
Compilation in a WinCE 3.00
Environment for more
information about the WinCE 3.0
environment.

_FLATRELEASEDIR=<drive>:/WINCE300/release
_WINCEROOT=<drive>:/WINCE300
CEPBDIR=E:\Progra~1\Window~1\3.00\CEPB\Bin
_TGTCPU=R3000 R4100 R4111 R4200 R4300 PPC821 SH3 SH4 i486 SA1100
ARM920 ARM720 PPC403 IDT32364 CEF
_TGTCPUTYPE=ARM MIPS PPC SHx x86 THUMB CEF
_TGTOS=NT NTANSI CE
_TGTPLAT=NOPLAT DESKTOP DESKTOP_SDK ODO ...
_TGTPROJ=MINSHELL MAXSHELL ...
_PROJECTROOT=E:\WINCE300\public\<_TGTPROJ>
_TARGETPLATROOT=E:\WINCE300\platform\ <_TGTPLAT>
_OEMINCPATH=<list of directories>

x86_nt
(Developer Studio)

VCC: Location of Developer Studio binaries.
VCC-specific settings by calling: %VCC%\bin\vcvars32.bat

x86ddk_nt DDK_HOME=<drive>:/WINDDK/3790

x86gnu_nullos No configuration specific variables need to be set for x86gnu_nullos

Table 3-2: Additional environment variables per configuration class <Helv9R>(Cont’d.)
Configuration class Environment variables with explanations

Table 3-4:
Configuration class Environment variables with explanations

hpncsc_nullos No configuration specific variables need to be set for hpncsc_nullos

x86ncsc_nullos _TMPSE = <location of Philips SystemC Environment> optional

x86osci_nullos _TMPSE = <location of Philips SystemC Environment> optional

Table 3-5: The generic environment variables
Environment variable Description Possible values
_TMSITE Site being worked on Local value like ehvblv, hbgslh, svlssg,

svldvi, blrsdm

_TMROOT Location of your SDE2 structure Any absolute path with forward slashes.

UNAME Specifies the host platform hpux, linux or cygwin (for WinNT)

_TMTGTBUILDROOT Location of product files (generated
files)

If not empty, any absolute path with
forward slashes.
If empty, comps directory.

_TMECHO Show extra info during make (or gmake) Not empty or empty/undefined

_TMTGTCOPYLIB Copy the lib directory tree to a
component-specific directory

1 (copy) or other (do nothing)
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 24 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
Note: Most environment variables are directly used by SDE2 and require forward slashes
(For Windows only). The PATH variable is not directly used by SDE2, but is required for a
WinNT host and requires backlashes.

Compilation of components for a certain configuration is done by opening a DOS or UNIX
shell, executing the platform-specific batch file (usually located in project/sites/<your site>
directory), going to the component’s directory and typing gmake.

_TMTGTCOPYOBJ Copy the generated object files to a
component-specific directory

Space-separated list of objects without
their extension, for example, tmComp1
tmComp2

_TMBSL Specifies the link rules for building an
image. You can make your custom file
maketarget<_bsl>.mk and set
_TMBSL=<_bsl>.

Can be a user-defined string specifying
the target platform; shows the default
values per configuration class.

_TMTGTENDIAN Endianness. Set for each configuration
class. It plays significant role only for
TriMedia (tm_psos). Different libraries are
generated.

eb or el
(Obsolete values be and le are still
accepted in this release.)

_TMTGTREL Release type debug, assert, trace or retail
(Obsolete values dbg and ret are still
accepted in this release.)

_TMLINKTYPE Link type (static/dynamic- DLL),
required for executables. Only . It is
currenly used only for tm_psos

static or dynamic

_TMDIVERSITY User-defined string for diversity, for
example, _mp_flo_

Normally empty, see Section 3.5,
Diversities on page 36. If non empty,
different diversities are separated with
an underscore.

PATH When using the SDE2 with WinNT, the
path variable is extended by SDE2 with
the Cygwin tool set (delivered with the
SDE2). Use backlashes.

PATH%=_TMROOT\sde\cygwin;%PATH%

_TMNODEPENDENCIES Dependency checking can be switched
off by setting to 1. No dependency
checking results in faster compilation
times.

1 (switch checking off) and other (do
dependency checking).

_TMNESTEDINCLUDE Recursive closure of Requires section
can be done. No recursive closure of
requires section has less inclulde paths.

null (novalue switch off) no recursive
closure of requires and 1 or any value
(any value swithc on) recursive closure
of requires.

_TMTGTWARNINGS Level of warnings. Level 0 corresponds
to (almost) no warnings and level 3 to
(almost) all warnings.

0, 1, 2, 3 or undefined

Table 3-5: The generic environment variables <Helv9R>(Cont’d.)
Environment variable Description Possible values
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 25 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
Choosing a configuration means setting the environment variables of Table 3-1, the
relevant environment variables of Table 3-2 and Table 3-5. Setting these variables is
typically done by a batch file such as tm_psos_debug_static_el_tm32_winnt_default.bat, which is in
the directory project/sites/blrsdm or project/sites/<your site>. Below, such
a file for a tm_psos configuration class is displayed:

Now we will discuss some specific issues for certain configurations.

3.2.2.1 Compilation in a WinCE 3.00 Environment

In this section it is described how to use SDE2 in combination with the WinCE 3.00
environment. This is not an easy matter and this manual does not give a complete
overview of what is to be done, but only some experiences of SDE2 team that might be
useful to the reader.

It is important that the appropriate environmental settings are set correctly. Working with
Microsoft Platform Builder may be rather difficult.

It is assumed that Microsoft Platform Builder 3.00 has been installed. Furthermore it is
assumed that you have a platform (CEPC or ODO in standard installation) and a Public
(Project) directory (in the following example MaxAll and MinShell will be used).

The first step is to build the WinCE 3.00 environment. This can be done in a DOS window
by entering a command like
CMD.EXE /k E:\WINCE300\public\common\oak\misc\wince.bat ARM ARM720 CE MAXALL ODO
or

CMD.EXE /k E:\WINCE300\public\common\oak\misc\wince.bat MIPS R3000 CE MAXALL ODO

or
CMD.EXE /k E:\WINCE300\public\common\oak\misc\wince.bat x86 i486 CE MAXALL CEPC

set _TMSITE=blrsdm
set _TMROOT=C:/ccm_wa/ssgmoreuse/sde-kazakov/sde/sde_template
set UNAME=cygwin
set _TMTGTBUILDROOT=c:/b_result_1812
set PATH=%_TMROOT%\sde\cygwin;%PATH%
set _TMECHO=
rem host and trimedia psos specific settings
set TCS=c:/trimedia
rem trimedia psos specific settings
set _TMTGTOS=psos250
set _TMTGTOSCLASS=psos
set _TMTGTCPUTYPE=tm32
set _TMTGTCPUCLASS=tm
set _TMTCSHOST=WinNT
rem flavor settings
set _TMBSL=
set _TMTGTENDIAN=el
set _TMTGTREL=debug
set _TMLINKTYPE=static
rem optional flavor setting
set _TMDIVERSITY=
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 26 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
The parameters after wince.bat are stored in the environmental variables _TGTCPUTYPE,
_TGTCPU, _TGTOS, _TGTPROJ, _TGTPLAT. Also used is the value of the variable WINCEDEBUG
that defines the compilation mode. The compilation mode in WinCE can be retail or
debug3and it is responsible for building libraries for one of these modes.

The next step is to execute buildrel and blddemo to build libraries and configuration files for
the chosen configuration. The libraries are placed in the directory
<_WINCEROOT>/Public/<_TGTPROJ>/cesysgen.

The value of the environmental variable _OEMINCPATH is obtained from the file
<_TARGETPLATROOT>/sources.gen that is generated via Platform Builder.

The compilation for the DVP1 software is done using the DVP1 platform instead of ODO.
Other custom platforms can also be used.

Note: Make sure that your WinCE directories are placed before the Microsoft VCC
directories in the PATH variable.

The SDE2 team was not able to build the configuration for the ARM920 processor.

For the ARM processor, only ARM720 with THUMB mode is supported.

Note: If you compile both for WinCE and x86_nt, the compiler may get confused picking the
wrong header files; it is better to put WInCE setting before x86_nt, but we would advise you
not to mix these two configurations in one shell environment.

3.2.2.2 Compilation in a R.E.A.L. environment

SDE2 supports R.E.A.L. environment for the toolset developed by ACE Associated
Compiler Experts B.V. This toolset has very severe restrictions of the C
syntax/compiler/linker and therefore it is unlikely components developed for other platform
to be reused for R.E.A.L. However, the components developed for R.E.A.L. can be reused
on another platform. This compiler is supported for mtos OS and for nullos OS (does not
use OS-specific features).

3.2.2.3 Compilation with VxWorks OS

The arm_vxworks configuration is not tested for some processors. There are known issues
with VxWorks in this release. One is support for Thumb mode (16-bit mode). For the
current version of Tornado (2.1) it is not possible to mix Thumb and ARM mode according
to the documentation. Our understanding of how to handle this is that this is component
diversity (see Section 3.5, Diversities on page 36 for more information). We suggest the
following for your component’s diversity.mk:

and in your makefile:

3. There is no assert mode in WinCe 3.00.

ifeq ($(_TMTGTCPUCLASS)),arm)
ifeq ($(findstring _thumb_,$(_TMDIVERSITY)),_thumb)
_<Your component name>_DIVERSITY=_thumb
endif
endif

include diversity.mk
LIB_SUFFIX := _<Your component name>_DIVERSITY
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 27 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
The following defines were made:

For 32-bit mode (this is determined if LIB_SUFFIX does not contain _thumb_:
-DCPU=ARMARCH4 -march=armv4

For (16-bit) Thumb mode (this is determined if LIB_SUFFIX contains _thumb_:
-DCPU=ARMARCH4_T -march=armv4t -mthumb -mthumb-interwork

For ARM7 processors (we assume arm720t is used, override ARM_CPU if not):
-DARMMMU=ARMMMU_720T -DARMCACHE=ARMCACHE_720T

For ARM920T processors:
-DARMMMU=ARMMMU_920T -DARMCACHE=ARMCACHE_920T

For ARM940T processors:
-DARMMMU=ARMMMU_940T -DARMCACHE=ARMCACHE_940T

If you use VxWorks, be aware that WindRiver (producer of VxWorks) changed the
standard gmake utilities, so they are not standard anymore. Therefore, for the compilation
of the dependencies we are using a C compilation utility from WindRiver (included in the
installation, it depends on the platform) instead of the standard gmake one.

We do not use standard libraries (such as libgcc.a) by default. The VxWorks linker does and
to prevent this, we use the option -nostdlib.

Be aware also, that arm_vxworks and mips_vxworks platforms are not consistent with each
other. This is due to the fact that the current working projects for these configurations are
very different. However, in a future release we are going to make them more consistent.

3.2.2.4 Building executables for mips_psos

There is one specific issue for building executables for mips_psos. In order to do this, we
need to build a number of object files in advance. They depend on the psos sys_conf.h file.
This is a time-costly operation and therefore, we build these object files once. If you use
the global sys_conf.h file, these object files are located in the generated directory and its
subdirectories (i.e., it is global). The file libstart*.a is generated from the object files and it is
used during the linking. If you have a local sys_conf.h file (usually in the inc directory),
SDE2 generates all object files and libstart_local*.a file. This file is always generated,
because it is placed in a global directory. The object files are generated once and they are
placed in a component-specific directory.

3.2.3 Identifying the configuration of libraries and executables

The location and the name of a library identify the configuration a library has been built for.
Below, the location/name of a library is shown in the case where _TMTGTBUILDROOT is not
empty:
<_TMTGTBUILDROOT>/comps/generated/lib/<_TMTGTCPUCLASS><_TMTOOLCHAIN>_
<_TMTGTOSCLASS>_<_TMTGTENDIAN>_<_TMTGTCPUTYPE>/lib<NAME><LIB_SUFFIX><
REL_SUFFIX>.<EXT>

For example,

build/comps/generated/lib/tm_psos_el_tm32/libtmRealFloat_g.a
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 28 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
Here _TMTGTBUILDROOT, _TMTGTCPUCLASS, _TMTGTOSCLASS, _TMTGTENDIAN, and
_TMTGTCPUTYPE are the environment variables as explained in Section 3.2.1, Selecting a
configuration, and NAME is the name of the component with the prefix tm. The NAME is
extracted from the DIR_LOCAL variable, which must be present in the beginning of each
makefile, for example,
DIR_LOCAL = comps/tmComp1

In this case NAME is tmComp1.

For libraries, EXT is generated by the SDE2 and equals lib for x86_nt, mips_ce, x86_ce,
arm_ce, and a for the rest. The value of REL_SUFFIX is usually4, and the value of
REL_COMPS_SUFFIX is always equal to _g when _TMTGTREL is debug, _a when _TMTGTREL
is assert, “” (empty string) when _TMTGTREL is retail and _t when _TMTGTREL is trace. The
value of LIB_SUFFIX can be defined in the component makefile. As a rule, it depends on the
diversity and contains different components’ diversities (see Section 3.5, Diversities for
more information) separated with underscores. For example,
LIB_SUFFIX = _mp_flo

The location of the DLL files is in the subdirectory of the corresponding static library
directory. The name of this subdirectory depends on _TMDIVERSITY and
REL_COMPS_SUFFIX. For more information see Section 3.6, Dynamic link libraries (DLLs).

JAR files are not platform-dependent. They are placed in the jar subdirectory of lib, for
example,
build/comps/generated/lib/jar/tmComp12_g.jar

Executables are stored in the following way:

<_TMTGTBUILDROOT>/comps/<component>/tst/Tst1/bin/<_TMTGTCPUCLASS><_TM
TOOLCHIAN>_<_TMTGTOSCLASS>_<_TMLINKTYPE>_<_TMTGTENDIAN>_
<_TMTGTCPUTYPE><REL_SUFFIX>_<_TMTCSHOST><_TMBSL><_TMDIVERSITY>/<TARGE
T>.<EXT>

Applications are stored in the <_TMTGTBUILDROOT>/apps directory.

When _TMTGTCPUCLASS is not equal to tm then _<_TMTCSHOST> is not part of the path
name. TARGET is the name of the executable, and EXT is either exe (nt, ce) or out (tm, mips, hp).

For example,
build1/comps/tmComp1/tst/Tst1/bin/tm_psos_static_el_tm32_WinNT_default/test.out

3.3 Standard precompile flags and tmFlags.h file

A lot of C/C++ code uses precompile flags to do conditional compilation of code
fragments. An example is shown below:

4. For exceptions read Section 3.13.4.2.

#ifdef NDEBUG
printf(“Retail mode\n”);
#else
printf(“Debug mode\n”);
#endif
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 29 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
SDE2 generates a header file tmFlags.h that contains some constants. Together with it,
SDE2 generates the makefile tmFlags.mk, with the same logical contents as tmFlags.h, and
the file tmFlags.cfg with some version settings. There is one tmFlags.h file generated for each
library directory (example tm_psos_el_tm32). This is because this file contains in addition to
definitions, other choices. For instance the file defines all possible endiannesses
(TMFL_ENDIAN_BIG, TMFL_ENDIAN_LITTLE) and the choice TMFL_ENDIAN which is then
either TMFL_ENDIAN_BIG or TMFL_ENDIAN_LITTLE. All defines related to OS, CPU, and
endianness are made by SDE2, and the libraries compiled for different combinations
cannot be linked together. Next to the predefined choices, the file contains standard
diversity constants, like TMFL_REL_DEBUG, TMFL_REL_ASSERT,TMFL_REL_RETAIL and
TMFL_REL_TRACE. The choice is not made in this tmFlags.h file because retail and debug
libraries can be linked together (they are binary compatible). There are more of these
predefined but not selected defines, like TMFL_SCOPE_XX for processor scope and the file
can be extended for all globally useful diversities.

The constants in the file are also available in the make process. So besides an ifdef in the
code, if statements in makefiles are allowed based on these flags.

Example of source code:

Example of makefile:

#if (TMFL_ENDIAN==TMFL_ENDIAN_BIG)
do some big endian specific stuff

#else
 # do some little endian specific stuff
#endif

ifeq ($(TMFL_ENDIAN),$(TMFL_ENDIAN_BIG))
C_SOURCES += my_big_endian_convertor.c

else
C_SOURCES += my_little_endian_convertor.c

endif

Table 3-6: #define variables that can be queried directly
#define that can be queried Possible values

TMFL_CPU_IS_8051 0 or 1
TMFL_CPU_IS_ARM 0 or 1
TMFL_CPU_IS_HP 0 or 1
TMFL_CPU_IS_MIPS 0 or 1
TMFL_CPU_IS_REAL 0 or 1
TMFL_CPU_IS_TM 0 or 1
TMFL_CPU_IS_X86 0 or 1
TMFL_OS_IS_BTM 0 or 1
TMFL_OS_IS_CE 0 or 1
TMFL_OS_IS_CEXEC 0 or 1
TMFL_OS_IS_ECOS 0 or 1
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 30 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
TMFL_OS_IS_INTEGRITY 0 or 1
TMFL_OS_IS_LINUX 0 or 1
TMFL_OS_IS_MTOS 0 or 1
TMFL_OS_IS_NT 0 or 1
TMFL_OS_IS_NUCLEUS 0 or 1
TMFL_OS_IS_NULLOS 0 or 1
TMFL_OS_IS_PSOS 0 or 1
TMFL_OS_IS_UCOS 0 or 1
TMFL_OS_IS_VXWORKS 0 or 1

Table 3-6: #define variables that can be queried directly <Helv9R>(Cont’d.)
#define that can be queried Possible values
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 31 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
Here NULLOS means no OS specific settings required, i.e., UNIX, Linux or Solaris. NT is
not NULLOS because some extra settings must be made for SDE2.

TMFL_ENDIAN TMFL_ENDIAN_BIG
TMFL_ENDIAN_LITTLE

TMFL_CPU TMFL_CPU_4KEC
TMFL_CPU_8051
TMFL_CPU_ARM10
TMFL_CPU_ARM1020E
TMFL_CPU_ARM1022E
TMFL_CPU_ARM1026EJS
TMFL_CPU_ARM1156T2FS
TMFL_CPU_ARM1156TFS
TMFL_CPU_ARM1176JTZS
TMFL_CPU_ARM720
TMFL_CPU_ARM922T
TMFL_CPU_ARM926EJS
TMFL_CPU_ARM946
TMFL_CPU_ARM966ES
TMFL_CPU_ARM968ES
TMFL_CPU_MIPS32
TMFL_CPU_R1910
TMFL_CPU_R3900
TMFL_CPU_R4000
TMFL_CPU_R4450
TMFL_CPU_RD16023
TMFL_CPU_RD16024
TMFL_CPU_RD24120
TMFL_CPU_STRONGARM
TMFL_CPU_TM3260

TMFL_OS TMFL_OS_BTM
TMFL_OS_CE
TMFL_OS_CE212
TMFL_OS_CE300
TMFL_OS_CEXEC
TMFL_OS_ECOS
TMFL_OS_INTEGRITY
TMFL_OS_LINUX
TMFL_OS_MTOS
TMFL_OS_NT
TMFL_OS_NT4
TMFL_OS_NUCLEUS
TMFL_OS_NULLOS
TMFL_OS_PSOS
TMFL_OS_PSOS200
TMFL_OS_PSOS250
TMFL_OS_UCOS
TMFL_OS_VXWORKS

Table 3-6: #define variables that can be queried directly <Helv9R>(Cont’d.)
#define that can be queried Possible values
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 32 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
The 0 value corresponds to false and 1 corresponds to true. Besides these #defines some
definitions are supplied to the compiler by SDE2 (by using the –D option). Table 3-7
contains the variables and their possible values. The possible values are specified in
tmFlags.h.

3.4 Compile and link options

In this section the compile and link options that can be set in SDE2 are described. These
options are divided into project-wide compile options, component-specific compile
options, file-specific compile options and link options. They are described in the following
four sections. These options are applicable for C, C++, JAVA and Asembly language
programming.

3.4.1 Project-wide compile options

Project-wide compile options can be fed to the build process by filling the makefile
variable _SDE_EXTRA_CFLAGS (or _SDE_EXTRA_CXXFLAGS for C++ files). This variable
should not contain options other than the -D options, because only the –D, –U or –I options
are interpreted in the same way by all C/C++ compilers. This variable is added before the
LOCAL_CFLAGS (LOCAL_CXXFLAGS) variable at the compilers settings. For example,
_SDE_EXTRA_CFLAGS = -DLEGACY

3.4.2 Component-specific compile options

Some software components require extra compile flags during compilation. C and C++
compilers support this by allowing users to supply a –D<compile flag> to the options list of
the compiler. SDE2 supports this by adding the following lines to the makefile of your
component or executable:
LOCAL_CFLAGS = <your component’s C options>
LOCAL_CXXFLAGS = <your component’s C++ options>

Example of a C-component that requires the options -DENABLE_GRAPHICS and
DENABLE_TCPIP:
LOCAL_CFLAGS = -DENABLE_GRAPHICS -DENABLE_TCPIP

Note that the compile flags start with -D. The content of the LOCAL_CLFLAGS and
LOCAL_CXXFLAGS is literally copied to the command line of the compilation process of the
source files specified in the makefile. The local flags are placed before _TMTGTCOPTS
(_TMTGTCXXOPTS) in the supplied order to the compiler. In this way they can overrule
existing options.

Specific compilation options can be added to the environment by putting these options in
_TMTGTCOPTS (_TMTGTCXXOPTS). So, the order of all compilation options for C files is

Table 3-7: Variables set by SDE2 for the compiler
Variable that can be queried in
the source code

Possible values Explanation

TMFL_REL TMFL_REL_RETAIL
TMFL_REL_ASSERT
TMFL_REL_DEBUG
TMFL_REL_TRACE

Release mode

NDEBUG Defined for release mode.
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 33 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
<SDE2 options><_SDE_EXTRA_CFLAGS><LOCAL_CLFLAGS>
<_TMTGTCOPTS><TARGET_CFLAGS>

Some components require the preprocessed files. The preprocess compilation process
can be started by setting the environment variable _TMTGTCPP.

3.4.3 File-specific compile options

Some components require that some of the source files of the component be compiled
with extra compile options.

The makefile of a component can indicate this by putting the following line(s) at the tail of
the makefile:
$(DIR_INTERM)/<source file>.$(_SDE_O) : TARGET_CFLAGS+=<compile option>

Here _SDE_O is the name of the object extension (.o, .obj).

TARGET_CFLAGS is only added to the compilation rules for that specific object. Below is an
example of a part of a makefile of the component tmComp4 with three source files, two of
which have special compilation options:
$(DIR_INTERM)/src/tmComp4int1.$(_SDE_O) : TARGET_CFLAGS+=-DTMCOMP4INT1
$(DIR_INTERM)/src/tmComp4int2.$(_SDE_O) : TARGET_CFLAGS+=-DTMCOMP4INT2

Note: There no TARGET_CXXFLAGS, use TARGET_CFLAGS for C++ compilation.

Also see comps/tmComp4/makefile of the SDE2 distribution.

Note that tmComp4 does not compile under UNIX with gmake version 7.75 or lower.

3.4.4 Link options

Some libraries require additional link options. The following line in the library makefile
specifies these link options:
LOCAL_LBFLAGS_POST_LIB = <local library link options>

Some test executables require additional link options. The following line in the executable
makefile specifies these link options:
LOCAL_LDFLAGS = <local executable link options>

3.4.5 Include directories

The order of include directories is:

• DIR_LOCAL – can be defined in the makefiles

• Local inc, src, cfg directories

• SDE2 common inc directory

• SDE2 common inc/cfg directory for tmSysCfg.h file

• SDE_IN_SDE inc directory (All of them) - Refer Section 3.8

• SDE2 inc/<_TMTGTCPUCLASS>_<_TMTGTOSCLASS>

• Release directory (for tmFlags.h)
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 34 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
• All inc directories of the required components and interfaces

• LOCAL_INCLUDES – can be defined in the makefiles

• Platform-specific include directories

• _TMTGTINCLUDES – can be defined in the makefiles

Usually DIR_LOCAL is used to define other directories within the component, for example,
src/x86_nt.

LOCAL_INCLUDES is used to overwrite platform-specific directories.

_TMTGTINCLUDES is used to add other include directories, not overwriting platform-specific
ones.

The directory inc/<_TMTGTCPUCLASS>_<_TMTGTOSCLASS> is used only from an
executable for some legacy sources. Typically it contains sys_conf.h file for some legacy
application (executable) sources.

3.4.6 Debug, assert, trace and retail libraries

Libraries can be built in four ways: in debug, retail, trace or assert mode, based on the
value of the environment variable _TMTGTREL. Table 3-8 lists the characteristics.

Suppose there are two components (libraries) for a tm_psos little-endian configuration and
the two components have been built for all three release modes. After building, there is a
comps/generated/lib/tm_psos_el_tm32 directory containing the following files:
tmFlags.h
tmComp1.a
tmComp1_a.a
tmComp1_g.a
tmComp1_t.a
tmComp2.a
tmComp2_a.a
tmComp2_g.a
tmComp2_t.a

A test application using both components has a makefile containing the following line:

Table 3-8: The 3 release modes and their characteristics
Release mode Value of the

_TMTGTREL
environment
variable

Precompile flag Library
suffix

Remarks

debug debug TMFL_REL==
TMFL_REL_DEBUG

_g Library includes
debug information

assert assert TMFL_REL==
TMFL_REL_ASSERT

_a No debug
information, assert
statement present

retail retail TMFL_REL==
TMFL_REL_RETAIL -DNDEBUG

No debug
information,empty
assert statement

trace trace TMFL_REL==
TMFL_REL_TRACE -DNDEBUG

_t Trace informationt
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 35 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
LIBS = tmComp1 tmComp2

When this makefile is invoked in debug mode, SDE2 will automatically add a _g suffix to
the library name and the makefile will automatically pick up the debug libraries, link them
together with the test application and generate a final executable. The same is true for
assert mode with an _a suffix, trace mode with a _t suffix and retail mode with no suffix.

Building in a different compilation mode can be forced using _force_retail, _force_assert,
_force_trace and _force_debug targets, for example,
gmake all _force_debug

will always build in debug mode, overriding the value of REL_SUFFIX.

Mixing debug, assert and retail libraries is possible, but requires SDE2 expertise. More
information regarding this feature can be found in the Section 3.13.4.2, Mixing
debug/assert/retail/trace diversities and build_exe.pl on page 73 and Section 3.15.4,
Component diversity.mk on page 99.

3.4.7 Warning levels

There are four warning levels within SDE2. The warning level is determined by the
environment variable _TMTGTWARNINGS. The following four values for _TMTGTWARNINGS
are supported:

• 0 – no warnings

• 1 – only severe warnings

• 2 – important warnings

• 3 – almost all warnings

If _TMTGTWARNINGS is not set, level 3 is accepted as default.

In some cases, it is not possible to suppress warning messages.

There are two types of warning messages. Microsoft compilers have their own warning
levels and we mapped our levels to Microsoft’s ones. GNU-like compilers support a
number of warning options, you can find more information at
http://gcc.gnu.org/onlinedocs/gcc-3.0.2/gcc_3.html#SEC7. We made the following characterization for
GNU-like compilers:

• Severe warnings: -Wparentheses, -Wuninitialized (for debug mode)

• Important warnings: -Wimplicit, -Wreturn-type, -Wunused

• All warnings: -Wall, -Wshadow, -Wpointer-arith, -Winline, -Wundef, -Wstrict-prototypes (for C
sources).

The test example for warnings is tmComp8/tst/Tst1.

3.5 Diversities

In general terms, a diversity is any "switch" in the source code that allows the same
source code to behave differently in various situations. Some examples include
endianness and CPU type. Programmers tend to be familiar with diversities handled using
the #ifdef construct.
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 36 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
SDE2 provides a sophisticated means of handling this type of variation in code. SDE2's
diversities go beyond the traditional #ifdef by providing comprehensive support for the
simultaneous existence of libraries compiled with the various settings. For example, the
debug and the assert versions of a library can be built serially and both will exist in an
appropriate directory.

Diversities are an important part of programming techniques. The best reusable
component is a component without any diversity. In many cases, diversities are
indispensable.

Four types of diversities are distinguished in SDE2: component, interface, run-time and
BSP (board support package) diversity. These are described in the next four sections.

3.5.1 Component diversity

Some components can be built for user-defined flavors. An example is a Teletext library
with the options to compile it with a large or small cache. The code would look like:

When compiling this library the result can be a library with small or large cache. So, two
new flavors or configurations of the library are introduced (next to the standard
configurations as described in Section 3.2.1, Selecting a configuration on page 17).

In the makefile, there are three ways to achieve these diversities:

• Extend the makefile with a _TMDIVERSITY selection (see Section 3.5.1.1, Extend the
makefile with a _TMDIVERSITY selection on page 37).

• Use a diversity.mk file (preferred approach, see Section 3.5.1.2, Use diversity.mk on
page 38).

• Do a recursive make (see Section 3.5.1.3, Recursive make on page 39).

3.5.1.1 Extend the makefile with a _TMDIVERSITY selection

The environment variable _TMDIVERSITY can have a user-defined value. By default this
variable is not defined. In case the compilation of a component is required with
user-defined diversities, the value should be a string of the form _<string 1>_<string 2>_
..._<string n>_

/* teletext.c */
#if TXTSMALL
/* Small cache size */
#define TXT_CACHE_SIZE 10
#elif TXTLARGE
/* Large cache size */
#define TXT_CACHE_SIZE 1000
#else
#error
#endif

static txtCacheEntry txtCacheEntries[TXT_CACHE_SIZE];

...
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 37 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
Here, <string i> is a field (string without spaces, underscore (_) or tilda (~)) indicating a
certain diversity.

In this case, before make is invoked, the variable _TMDIVERSITY is set to _txtsmall_<xxx>_
(indicating small cache). The next step is extending the makefile of the component with
the following lines:

After that, make will build the library for the correct diversity. The result is a library with the
name,
lib<NAME><LIB_SUFFIX><REL_SUFFIX>.<EXT>

Here NAME is the name of the library, REL_SUFFIX is _g, _a, or "". The EXT is a or lib. Also
LIB_SUFFIX is a variable used by SDE2 that can be set by the component makefile. For
example, libtmtxt_txtsmall_g.lib

An example of the use of the _TMDIVERSITY flag can be found in the example component
tmComp2 of the SDE2 distribution that has user-defined diversity.

3.5.1.2 Use diversity.mk

The content of diversity.mk is described in Section 3.15.4, Component diversity.mk on page
99. It is a natural extension of the first case to use _TMDIVERSITY. The main idea is to
remove the diversity definitions from the makefile in order to make them accessible
directly to other components via SDE2. The process is illustrated by the following
example.

Let tmComp10 require tmComp8 built either in multiprocessor or in single processor mode
depending on the current value of _TMDIVERSITY. So, an ifeq construction can be applied in
tmComp10 using the approach from the previous section for tmComp8. However, if several
components require tmComp8, every component has to have this section. It is more
efficient to have this information only once, i.e., in the file tmComp8/diversity.mk (see the

#--
Find string '_txtsmall_' or '_txtlarge_' from the diversity environment
variable _TMDIVERSITY
#--
ifeq ($(findstring _txtsmall_, $(_TMDIVERSITY)),_txtsmall_)
LOCAL_CFLAGS= -DTXTSMALL
LIB_SUFFIX= _txtsmall
endif
ifeq ($(findstring _txtlarge_, $(_TMDIVERSITY)),_txtlarge_)
LOCAL_CFLAGS= -DTXTLARGE
LIB_SUFFIX= _txtlarge
endif

...
all: diversity configuration lib

diversity:
ifeq ($(LIB_SUFFIX),)

@$(ECHO) "_TMDIVERSITY must contain _txtsmall_ or _txtlarge_ "
@exit 1

endif
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 38 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
example in Section 3.15.4). Now, tmComp10 has in its LIBS section, LIBS=tmComp8. Further,
SDE2 includes tmComp8/diversity.mk if it is present. tmComp8/diversity.mk sets the values of
_tmComp8_SUFFIX and _tmComp8_DIVERSITY. These values are filtered out by SDE2 yielding
the final diversity. This mechanism may be complex, but a user only has to:

• Write the diversity.mk file

• Set the LIBS section in all component that require this component

As an example see tmComp8/diversity.mk at Section 3.15.4.

3.5.1.3 Recursive make

Another way to deal with component diversity, is to modify the makefile in such a way that
the makefile automatically creates both flavors of libraries. This is the approach which
must be used if you always need to produce more than one library per component with
different flavors. In fact make must be called at least twice by the component's makefile.
This is called a recursive make.

When doing a recursive make, it is important that the C_SOURCES line at the top-level
invocation of the make is empty (since GNU make otherwise starts to generate
dependencies). The standard variable C_SOURCES is renamed to C_SOURCES_gen. In the
recursion the value of C_SOURCES_gen is assigned to C_SOURCES. To generate the name of
the image, a LIB_SUFFIX variable needs to be specified as described in the previous
section. In the all target the recursion is created. The first make invocation generates the
small cache version of the library, the second invocation, the large cache processor
version. Below is the tmComp7 makefile (without comments):

DIR_LOCAL = comps/tmComp7
include $(_TMROOT)/sde/environment.mk

CXX_SOURCES =
C_SOURCES_gen =\

src/tmComp7.c \
src/$(_TMTGTCPUCLASS)_$(_TMTGTOSCLASS)/tmComp7PlatformSpecific.c

REQUIRES =
DIR_INCLUDE = src
LOCAL_CPPFLAGS =

LIB_SUFFIX=$(subst lib,,$(COMP7_LIB))
C_SOURCES_sp = $(C_SOURCES_gen) # add here sp specific src/tmComp7Sp.c
LOCAL_CFLAGS_sp = $(LOCAL_CFLAGS) -DTMFL_SCOPE=TMFL_SCOPE_SP
C_SOURCES_mp = $(C_SOURCES_gen) # add here mp specific src/tmComp7Mp.c
LOCAL_CFLAGS_mp = $(LOCAL_CFLAGS) -DTMFL_SCOPE=TMFL_SCOPE_MP

all: configuration FORCE
@$(ECHO) making multi processor version
@$(MAKE) "COMP7_LIB=lib_mp" "C_SOURCES=$(C_SOURCES_mp)" \

"LOCAL_CFLAGS=$(LOCAL_CFLAGS_mp)" lib
@$(ECHO) making single processor version
@$(MAKE) "COMP7_LIB=lib" "C_SOURCES=$(C_SOURCES_sp)" \

"LOCAL_CFLAGS=$(LOCAL_CFLAGS_sp)" lib
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 39 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
3.5.2 Complex interface diversity

Some development projects use an interface-based way of working. Interfaces are put in
the intfs directory. Components are introduced that implement those interfaces.

In some cases, the interfaces are abstract and become concrete when connected to a
certain component during compilation. Clients using those abstract interfaces must
identify in their makefile what component is making the abstract interface concrete. This is
done by using the PROVIDED_BY keyword in the REQUIRES section of the makefile, for
example,

An example of an abstract interface that is implemented by a component can be found in
comps/tmRealFloat in the SDE2 distribution. An example of a client using the abstract
interface can be found in comps/tmComp3.

3.5.3 Run-time diversity

Some components offer a so-called run-time diversity. This type of diversity uses run-time
information during the build/run process. There are different definitions of run time and we
use a broad one. We assume that the run-time diversity is something which happens after
SDE2 component delivery. There is another definition which states that run-time diversity
is something which happens in run time, for example reading user input, reading color of
the window, etc. This definition is not used within SDE2 because there is no need to
define such diversity within SDE2.

A good example for run-time diversity within SDE2 is when the source code is split into
two parts: a part that may be modified and recompiled by clients (the run-time diversity
part), and a part that must not be modified by the component.

The normal (not-configurable) code is put in the src directory of the component. For the
configurable code (run-time diversity part) a new directory cfg next to the src directory is
introduced. In the makefile of the component a new line is introduced:
CFG_SOURCES = <sources that may be re-compiled by clients>

ifneq ($(DIR_CONFIG),_)
include $(DIR_SDE)/$(DIR_CONFIG)/makelib.mk
endif

ifeq ($(strip $(TMFL_CPU_IS_TM)),1)
$(DIR_INTERM)/src/tmComp7.$(_SDE_O) : TARGET_CFLAGS+=-O4
endif

#--
Required components
#--
REQUIRED_INTERFACES = \

tmReal PROVIDED_BY tmRealFloat

PROVIDED_INTERFACES =

REQUIRES = $(REQUIRED_INTERFACES)
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 40 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
For example,
CFG_SOURCES = cfg/tmComp6_Cfg.c

Note: Only a c extension for configurable sources is allowed.

When the makefile is executed, all code is compiled and linked to a library. The library
also contains the object code of the CFG_SOURCES. After that the SDE2 copies the
configurable source files defined in CFG_SOURCES to
<_TMTGTBUILDROOT>/comps/<component name>/cfg

Applications (executables) that can use the default configuration can use the component
in the normal way. Applications that want to configure the component in another way, have
to recompile the configurable part of the component. After that, SDE2 will take care that
the executable contains the reconfigured object code instead of the original object code.
Note that this mechanism will not work for DLLs.

Therefore, the makefile of an application/executable typically contains the following lines
of code (also see tmComp6/tst/Tst1 in the SDE2 distribution):

The original component tmComp6 is compiled with header file inc/sys/tmSysCgf.h. For
recompilation of the configurable code, i.e., tmComp6_Cfg.c, the following include directory is
introduced: $(DIR_CFG_SOURCES) which is the directory containing tmComp6_Cfg.h.
tmComp6/tst/Tst1/src contains a modified header file, tmSysCfg.h, that is included by
tmComp6_Cfg.h.

3.5.4 BSP diversities

Linking libraries and objects into an executable is the most diverse part of SDE2. This final
link process is very dependent on the environment. Making a TriMedia executable is
significantly different than making a mips-pSOS image for a standard Algorithmics board.

The link rules for a certain platform are found in the maketarget<_TMBSL>.mk file of the
directory sde/<_TMTGTCPUCLASS>_<_TMTGTOSCLASS>. For most configuration classes a
default maketarget.mk is supplied (_TMBSL is empty). For the mips-psos configuration class the
file maketarget_p4032.mk (_TMBSL=_p4032) is supplied. This file includes a maketarget_generic.mk
that defines the linking rules for a P4032 Algorithmics board.

tmComp6Cfg.c is the configurable code of component 6.
C_SOURCES = \

src/test.c \
...
tmComp6Cfg.c

#--
Extend the VPATH to find the configuration files
#--
DIR_CFG_SOURCES=$(_SDE_DIR_REL_TO_LOCAL_ROOT)/comps/tmComp6/cfg
VPATH += $(DIR_CFG_SOURCES)
...
DIR_INCLUDE = src $(DIR_CFG_SOURCES)
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 41 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
Having a board other than the one supported by the SDE2, means making your own
maketarget<_TMBSL>.mk file. The content of such a file is discussed in Appendix G, The
maketarget<_TMBSL>.mk files. If the new link rules (more or less) match the original
SDE2 link rules, it may be wise to create a new maketarget<_TMBSL>.mk makefile that does
an include of a generic makefile that contains the common parts of the link process, see
the maketarget_p4032.mk file of the sde/mips_psos directory.

When building is required for a new board, the environment variable _TMBSL is set to the
new value. During the build, the new maketarget<_TMBSL>.mk will be selected for building a
final image.

A good example for BSP diversity, is the maketarget_dvp1.mk makefiles (one per platform)
that are delivered with SDE2.

The following table lists the standard SDE2 makefiles (maketarget<xx>.mk) for making an
image or executable per configuration class.

3.6 Dynamic link libraries (DLLs)

SDE2 supports DLLs for arm_ce, armgnu_linux, mips_ce, mipsgnu_linux, tm_psos, x86_nt, x86_ce, .,
x86gnu_nullos and x86gnu_linux.

3.6.1 Generation

The generation of a DLL is started if the EXPORTS makefile variable is not empty. In this
case SDE2 generates static libraries and DLLs. The example component Comp8 illustrates
the way DLLs are generated by SDE2.

If the export function (variable) is defined by
void tmComp8Print(int i);

then in the makefile you have:
EXPORTS = tmComp8_Print

The DLL names are as follows:

• tm – The name is the same as a library name and the extension is dll.

• nt, ce – The name is the same as a library name without a lib prefix and the extension
is dll. Additionally the.lib and.exp files are generated with the DLL’s name.

• linux, x86gnu_nullos– The name is the same as a library name with a lib prefix and the
extension is so.

Note: You must add extern C in your sources if you compile in C++ mode.

Table 3-9: Standard makefile per configuration class
Configuration class maketarget<xx>.mk Description

mips_psos
(ISI Diab Data compiler)

maketarget_p4032.mk
maketarget_dvp1.mk

Makefile for making a P4032
Algorithmics board image

All other platforms maketarget.mk
maketarget_dvp1.mk

Makefile for making a default and
DVP1 platform-specific images
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 42 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
3.6.2 DLL generation options

Different DLL diversities can be set using the following environment variables:

• _SDE_DLL_OPTIONS – If you put your options here, they will be at the beginning of all
options excluding _SDE_LBOPTS.

• LOCAL_DLLFLAGS – If you put your options here, they will be at the end of all options.

So, the order of DLL options is:
<_SDE_LBOPTS><_SDE_DLL_OPTIONS><All export symbols, platform-specific stuff, libraries and DLLs>
<LOCAL_DLLFLAGS>.

Note: If you execute the binary executable from the SDE2 location, you have to set the DLL
path to your PATH environment variable.

3.6.3 DLL directory structure

This DLL directory structure has been introduced to give good support for diversity
mechanisms. The relation between different DLLs is established at compile time, so it is
not possible to link different DLLs at link time if they do not contain the proper link between
them made at compile time. Therefore, sets of DLLs for different diversities have to be
supported. This is done by having one (or a set of) fixed DLL name per component and
placing this DLL in a subdirectory of the generated lib directory. The name of the
directory is determined by the concatenation of the values of _TMDIVERSITY (sorted by
items separated with underscores; without trailing underscores, if present) and
REL_COMPS_SUFFIX (see Table 3-12 Variables for any makefile). If both are empty, the
current platform-specific lib directory is selected. For example, for
_TMDIVERSITY=_flo_sp_

REL_COMPS_SUFFIX=_g

the directory name is _flo_sp_g

For,
_TMDIVERSITY=_kernel_

REL_COMPS_SUFFIX=

the directory name is _kernel
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 43 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
For an x86_nt compilation, assume there are two components – tmOsal and tmcr – and two
diversities to compile with, _mp_ and _sp_ (both in debug mode). This will yield the
following output directory structure:

This directory structure also applies in the case of a binary release.

3.6.4 Usage

You can use DLLs with the following statements in the makefile’s DLL line:

Optionally you could have

The REQUIRES statement contains a list of required LIBs and DLLs within SDE2.

If required, the DLLs are searched for in two places:

• In the (sub)directory of the generated lib’s directory (see above)

• In the same (sub)directory of the binary release lib directory.

Note: The application or component links with the DLL only in the case that this DLL is
present (in the release tree or in the component binary release). Otherwise it links with the
static library.

There are a few different DLL load modes for tm_psos. Quite often more than one is used.
To facilitate this tm_psos requirement, the keyword _<CompName>_LOADED is introduced in
SDE2. If it is present, the required DLL in the specified mode is loaded. If it does not exist,
the default load mode immediate for tm_psos compilation is taken.

Figure 3-6: Example x86_nt compilation with two components and two diversities

REQUIRES = tmComp8 tmComp10
"

LIBS = tmComp8 \
tmComp10

_tmComp8_LOADED=immediate
_tmComp10_LOADED=deferred
_tmComp10_SUFFIX=_r
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 44 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
The _<CompName>_LOADED keyword is not used for x86_nt, x86_ce, arm_ce and mips_ce.

If you use external DLLs you can set their locations and names in EXTERNAL_DLLS. For
example,
EXTERNALS_DLLS = c:/my_1_location/my_1_dll e:/my_2_location/my_2_dll

The usage of external DLLs will make your software less reusable.

Writing DLL source files does not always require having a DLL entry point DllMain.
However, in the current SDE, this entry point is always required for the x86_ce platform, see
tmComp8. More information about the DLLs is available at http://www.cygwin.com/docs.html.

3.6.5 C++ support and DLLs

SDE2 supports C++. However, we generate DLLs only if EXPORTS is not empty. This might
be the case in C++, for example, if we would like to export only classes. In this case the
export definition is in the header file. In order to generate DLLs, we need to make EXPORTS
in the component makefile non empty. This can be accomplished as follows:

See tmComp9 as an example for C++ support.

3.6.6 Suppressing DLLs

DLL generation is suppressed if you invoke the _sde_suppress_dlls target, for example,
gmake all _sde_suppress_dlls

3.7 Libraries and the LIBS section

To illustrate the relevance of this concept, consider the following example.

You have a large number of components and you change something in one of these
components with the consequence that it requires another BSP library, it has another
diversity, etc. It is easy to assume that most of the developers writing applications based
on this component are not aware of the change. Now you have two options:

• Inform all the users of the change and instruct them to change their
executable-makefile, editing its LIBS section.

• Have SDE2 handle this case.

The first option may be problematic, therefore we prefer to have SDE2 handle this case.
Here it is described how it is used and how the implementation is made.

empty =
EXPORTS = $(empty) $(empty)
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 45 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
3.7.1 How is the LIBS section used?

The only thing you need to know about LIBS sections is that if you use functions from
another component, then this component should be placed in the LIBS section. Typically,
the REQUIRES section consists of required component and required interfaces. The LIBS
section consists of (subset of) required components, for example,

There cannot be circular-dependent LIBS sections.

Now we are going more deeply into the compilation process and components’
dependency generation.

3.7.2 DependsOn relation

We say that the component/executable A DependsOn component B if B is needed in
order to:

• Compile A’s DLL

• Link A or an executable which DependsOn A. During the linking process, library B is
placed after library A.

So, we introduce the transitive relation DependsOn and this relation has its physical
implementation in the LIBS section of the component makefiles. In all component
makefiles it is necessary to mark the dependencies of the component. For example, for
the comps/tmComp10/makefile:
LIBS=tmComp8 tmComp3 tmComp2

The static library compilation process does not depend on this line. The goal (permanent
from SDE2 1.2) that depends on this is _sde_libs. The purpose of _sde_libs is to print the
required libraries to a file <CompName>.l. This file is located in the directory
$(_SDE_DIR_BUILD)/tmp/$(_SDE_LIB_CONFIGURATION)/$(_SDE_DIVERSITY).

The *.l files contain the list of all the required component (libraries) without prefixes and
suffixes per specific configuration (processor type and class, os class, diversity, rel.mode).
The component names are space separated, for example for _mp_g/tmComp10.l,
tmComp8 tmComp3 tmComp2

This is the copy of the LIBS statement for the specific configuration.

Per specific configuration means that the LIBS section might be configuration-dependent
and for different configurations we place *.l files in a different directories.

The names of the libraries are determined at the linking time of the executable/DLL.
These names are derived from _SDE_IMPORT_DLLS for DLLs and in _SDE_LIBS_DIVERSITY
for libraries, for example (we assume that tmComp8.dll is present),

REQUIRED_COMPONENTS = tmA tmB tmC
REQUIRED_INTERFACES = tmD tmE
REQUIRES = $(REQUIRED_COMPONENTS) $(REQUIRED_INTERFACES)
LIBS = $(REQUIRED_COMPONENTS)

gmake var=_SDE_IMPORT_DLLS var2=_SDE_LIBS_DIVERSITY _sde_print_var_5
_SDE_IMPORT_DLLS = tmComp8
_SDE_LIBS_DIVERSITY = tmComp2_flo_g tmComp3_g
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 46 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
Having all *.l files for a given configuration, the transitive closure of the libraries can be
computed. That means that a correctly ordered list of all required libraries can be created
and submitted to the link line for any executable or DLL that requires one or more of them.
So, the result from the DependsOn relation finally ends in the correct compilation line at
link time.

Note: Do not manually change *.l files. Even if you have good knowledge of how SDE2
works, it is not a good idea to distribute your sources with instructions how to change *.l
files between the compilation processes. This may only be done for debug purposes.

SDE2 is responsible for doing this. It sets all the required libraries and DLLs in the correct
order in _SDE_IMPORT_LIBS and _SDE_IMPORT_DLLS. Further, _SDE_LIBS_DIVERSITY is
computed on a base of _SDE_IMPORT_LIBS with the following flavors/changes:

• If _<CompName>_DIVERSITY is defined for some CompName from _SDE_IMPORT_LIBS, this
is added after the component name;

• If _<CompName>_SUFFIX is defined for some CompName, then this component is used
always in a fixed compilation mode;

• If _<CompName>_REPLACE is defined for some CompName, then the library of this
component is replaced during the link time with the library of _<CompName>_REPLACE.

DLLs have no suffixes, they are placed in different directories for a different values of
_TMDIVERSITY and _TMTGTREL.

The variables _SDE_LIBS_DIVERSITY and _SDE_IMPORT_DLLS are used for linking of:

• Executables

• DLLs for nt or ce

Thus, the LIBS section introduces link-time dependency. The REQUIRES section introduces
only a compile time dependency.

3.7.3 Overriding default diversities and *.l files

There are three levels of mixing debug/assert/retail/trace modes and diversities:

1. All required libraries are built using the current value of _TMTGTREL and
_TMDIVERSITY, no mixing.

2. The component can be specified that it is always required in a fixed
compilation/diversity mode. As a rule, the diversity mode is derived from
_TMDIVERSITY. This is specified in the component’s diversity.mk file. You can do this in
the following way:

a. The value of _<CompName>_SUFFIX can be set to _g, _a, _t or _r. This means that this
component will be required in a fixed (debug, assert, trace and retail
correspondingly) compilation mode unless the makefile overrides this behavior.
Additionally, it can be stated in the makefile that the component must be built
only in this mode, by changing the value of REL_SUFFIX to _g, _a, _t or to the empty
string (denoting retail mode).

b. The value of _<CompName>_DIVERSITY is derived from _TMDIVERSITY in the
component’s diversity.mk file. This file is included in the final linking process, so the
executable knows which diversity it needs. See Section 3.15.4, Component
diversity.mk.
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 47 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
3. It can be defined that an executable or DLL requires a component with a fixed
compilation mode or diversity. In this way the component’s default compilation mode
can be overwritten. This should be done in the makefile of the executable, for
example, _tmComp1_SUFFIX=_a _tmComp2_DIVERSITY=_mp

In the second and third level it must be taken into account that DLLs and .l files are
generated into the directory determined by the value of _TMTGTREL. So, if you have
_TMTGTREL=debug and if you force tmComp8 to be generated in assert mode, it will be
placed in a subdirectory (e.g., _mp_g) which is correct because all DLLs should be in one
release directory determined by the values of _TMDIVERSITY and _TMTGTREL.

If the component A, which creates a DLL, requires a component B in a different
compilation mode and this is specified in A’s makefile, then all the executables/DLLs
which DependOn component A must specify in their makefiles this different compilation
mode for B as well. This is very inconvenient. Therefore, it is better to specify this in the
A’s diversity.mk. Then all executables/DLLs will be able to read this information in SDE2
run-time.

Example present in SDE2:

Note: Makefile of tmComp14 requires tmComp1 to be built and used in assert mode

Figure 3-7: Example of DependOn relationship
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 48 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
3.7.4 Missing *.l file(s)

If one or more *.l files are missing during the build of an executable or DLL, SDE2 will give
you a warning message, for example,

and will refer to this section. If a *.l file is missing, it can cause a failure of the build
process, because SDE2 cannot make the correct compilation line. This could be caused
by:

• Changing one or more environment settings between the different builds;

• Directly using a binary (library) release;

• Removing the existing *.l files;

This can be corrected easily by one of the following two approaches:

• If one of the component’s *.l file is missing, you can go to this component’s directory
and type gmake (or gmake _sde_libs);

• If more of the component’s *.l files are missing, it is better to use a build_exe.pl script in
a following way:

perl build_exe.pl -l <your component/executable>

This script will find recursively all required components and it will build all the *.l files for
you. For more information about the scripts, see Section 3.1, Common directory structure
on page 10.

3.7.5 Promotion of the interface

Let’s say that you have a component A. Due to some reasons, you have to promote the
interface of this component to the intfs directory. There are few steps you have to
complete.

1. Create in the intfs directory subdirectory ItmA.

2. Copy the public header files from tmA/inc to ItmA/inc.

3. Delete the files in the tmA/inc directory.

The biggest advantage of these approaches is that your components/executables, which
require A will still work. They will require the interface in ItmA and they will use the library of
component A as a default without any change of the makefile.

Of course, you can define your interface with a unique name and start using it without a
default implementation.

3.7.6 Replacing the libraries and DLLs

During the development process, for some reason you may use the interface of one
component. But during the linking, you need another implementation of the same
interface. SDE2 offers the possibility to replace one component with another during the
final linking process. Both components must provide (and require) the same interface. You
can do this in your executable makefile as follow:

Warning: tmRealFloat.l file(s) in c:/b_result_1206/comps/<CompName>/tmp/x86_nt_el_i486/_g is/are missing. Read
Chapter 3.7.4 of the User Manual!!!
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 49 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
_tmComp17_REPLACE = tmComp16

If you do this, you are responsible for the following:

• Both components should have (provide/require) the same interface.

• In the case that one generates a DLL, the other should do this too. Moreover, both
should have the same EXPORTS section;

• If one has a binary release (for some diversities), the other must have a binary
release as well (for the same diversities).

During the replacement, the flavors (suffixes) of the component are not changed.

3.8 SDE_in_SDE

The concept of SDE_in_SDE describes a system of structuring a component hierarchically.
In this section the concept will be described with an example (see Section 3.8.1, Example
component structure for SDE_in_SDE on page 50).

The MoReUse standard allows you to organize the internal structure of a component's
src directory according to your own preferences. SDE2 also does not prescribe how the
src directory should be organized. However, SDE2 supports an extra feature called
SDE_in_SDE.

The basic principle is that the directory src contains a subdirectory comps that contains a
number of subcomponents.

The delivery of SDE2 contains an example component for SDE_in_SDE (tmComp5).

3.8.1 Example component structure for SDE_in_SDE

Let’s look at the following example:

Figure 3-8: Example component structure for SDE_in_SDE
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 50 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
Here, tmComp1 and tmComp2 can be compiled separately by using gmake in their respective
directories. We need not have to select uniqe names for the sub components, as in the
case of the main components. However, it is recommended to use the unique names. We
can also build the sub-components automatically, by building the main components. In
order to integrate the sub-components in the whole build process, some rules have to be
adhered to. These are listed and explained in the next section.

3.8.2 Rules for SDE_in_SDE
• The sub components tmComp1 and tmComp2 would have their own makefiles. Hence they can by

compiled separately, as done in the case of main components.

• Any external component (eg: tmComp4) does not have access to the (libraries and
object files of the) internal sub components tmComp1 and tmComp2.

• The sub components tmComp1 and tmComp2 can have access to any external component
(eg: tmComp4). This has to be set in their REQUIRES sections of the sub component’s
makefile. Further, the LIBS section of the main component tmComp5 must be set to tmComp4.
Explanation: Source file in the src directory of tmComp5 requires tmComp4, which must
be marked in the.l files.

• The main component tmComp5 has access to the libraries and objects of the sub
components tmComp1 and tmComp2. However, this should be marked explicitly in the
main components makefile. This could be achieved by adding the following line to the
main component’s make file ;

• The generated libraries of the sub components tmComp1 and tmComp2 are located in
$(_TMTGTBUILDROOT)/comps/tmComp5/lib/$(_SDE_LIB_CONFIGURATION).
They have to be in a location different from the release directory.

• The main component tmComp5 is responsible for building the sub components tmComp1 and
tmComp2. Typing gmake will build the sub components tmComp1 and tmComp2 first and
after that the main component tmComp5.

• If the user wants, he can get a copy of the sub component’s library by setting
_TMTGTCOPYLIB to 1. The library of the sub components are copied to
../$(DIR_LOCAL)/src/comps/<sub component
name>/lib/$(_SDE_LIB_CONFIGURATION).However, this copied library of
the sub components can not be automatically used in the build
process.

• Normally, the binaries of the sub components have to be embedded in the binary of
the main component by including the sub component’s object files while linking the
library of the main component.. This is shown in the following example.\The following

example shows the

DIR_INCLUDE = src/comps/tmComp1/inc src/comps/tmComp2/inc

_SDE_OBJECTS += \
$(_SDE_DIR_BUILD)/src/comps/tmComp1/tmp/ \
$(_SDE_LIB_CONFIGURATION)$(_SDE_ARSUFFIX)/src/ \
tmComp1.$(_SDE_O)\
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 51 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
3.8.3 Defining SDE_in_SDE in your makefile

It is easy to define your sub components wiith in the main component in SDE2.

The following steps have to be followed while building a component having the sub
components:

• Build the sub components first.

• Include their object files to _SDE_OBJECTS variable of the main component.

• Set DIR_INCLUDE to required header files of the sub components in the main
component’s makefile

• Build the main component

• The following example shows the content of the main component’s makefile
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 52 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 53 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
DIR_LOCAL= comps/tmComp5
#***
Do not change the following include
#***
include $(_TMROOT)/sde/environment.mk
#---
Source environment variables
#---
CXX_SOURCES =
C_SOURCES=\

src/tmComp5.c
#---
Required components
#---
REQUIRES =
LIBS = tmComp4
#***
Do not change this
#***
all: configuration FORCE

@$(ECHO) making internal component tmComp1
@$(MAKE) -C src/comps/tmComp1
@$(ECHO) making internal component tmComp2
@$(MAKE) -C src/comps/tmComp2
@$(ECHO) making main component tmComp5
@$(MAKE) lib

main: configuration lib

Directory where the sde_in_sde includes are stored
#---
DIR_INCLUDE= src/comps/tmComp1/inc \

 src/comps/tmComp2/inc

ifeq ($(findstring _flo_,$(_TMDIVERSITY)),_flo_)
_tmComp2DIV := _flo
else
ifeq ($(findstring _int_,$(_TMDIVERSITY)),_int_)
_tmComp2DIV := _int
endif
endif

_SDE_OBJECTS += \

$(_SDE_DIR_BUILD)/src/comps/tmComp1/tmp/$(_SDE_LIB_CONFIGURATION)$(_SDE_ARSUFFIX)/src/tmComp5C
omp1.$(_SDE_O) \

$(_SDE_DIR_BUILD)/src/comps/tmComp2/tmp/$(_SDE_LIB_CONFIGURATION)$(_tmComp2DIV)$(_SDE_ARSUFFI
X)/src/tmComp5Comp2.$(_SDE_O)

#***
Do not change the following include
#***
ifneq ($(DIR_CONFIG),_)
include $(DIR_SDE)/$(DIR_CONFIG)/makelib.mk
endif
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 54 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
• For sub components, the following sections are needed before including
environment.mk:

Here DIR_LOCAL is set to the name of the component with an src/comps/ prefix.

SDE_IN_SDE contains the name of main component.

• The following example shows the content of the sub component’s makefile

DIR_LOCAL = src/comps/tmComp1
SDE_IN_SDE = comps/tmComp5

DIR_LOCAL= src/comps/tmComp1
SDE_IN_SDE= comps/tmComp5
#***
Do not change the following include
#***
include $(_TMROOT)/sde/environment.mk
#---
Source environment variables
#---
CXX_SOURCES =
C_SOURCES=\

src/tmComp5Comp1.c
#---
Required components
#---
REQUIRES = tmComp4
LIBS =
#---
Directory where the 3rdparty includes are stored
#---
DIR_INCLUDE=

#***
Do not change this
#***
all: configuration lib

#***
Do not change the following include
#***
ifneq ($(DIR_CONFIG),_)
include $(DIR_SDE)/$(DIR_CONFIG)/makelib.mk
endif
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 55 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
3.8.4 SDE_in_SDE and gmake clean

If you use gmake clean in a subcomponent, it cleans only the files generated by the
subcomponent. If you execute gmake clean in a main component, it cleans the files
generated by the main component, but not the files from the subcomponents. So, if you
want to clean all the files from your main directory, you have to define clean rule in
yourmain component’s makefile.:

3.9 Multiproject SDE2

The multiproject feature in SDE2 can be summarized as working with multiple comps
directories. It may happen that a development team develops a component that depends
on components (source or binary release) of other projects and to which the development
team has (read) access. This usually will happen using a configuration management tool,
but that is not relevant for the principle.

A possible solution for the multiproject problem is to copy all component data of the
different development teams that is relevant for you into your own comps directory. This
solution however has a number of disadvantages:

• Your project data usually are under control of a configuration management tool and
you do not want to mix it with other project’s data.

• If several projects use the same data, there will be several identical copies in the
network.

• Copying (of the external project) may be needed quite often to keep consistent with
the other project.

• It is an inelegant way involving ad hoc actions.

SDE2 offers a solution to handle this situation, which is explained in the following section.

clean::
@$(MAKE) -C src/comps/tmComp1 clean
@$(MAKE) -C src/comps/tmComp2 clean
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 56 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
3.9.1 Multiproject implementation in SDE2

Let us look into the following example of multiple project structure.

This example also considers one global SDE directory containing the SDE2 release, the
inc directory and the project directory

Lastly, this example considers that the implementation is to be hidden in SDE2. There are
two files generated from prjlist.txt. The files loc_list.txt and loc_list.mk are located in
<_SDE_TMTGTBUILDROOT>/project.

As a rule, if more than one component with the same name is present in different projects,
SDE2 is working with the last specified component (i.e., in the last specified project in
prjlist.txt).

The file prjlist.txt contains space-separated locations of the projects, for example,
c:/KERNEL e:/INFRA f:/ready/PERIPHERIAL

The file prjlist.txt may also contain environment variables. If you change the values of these
variables (e.g. to update loc_list.* files), you are responsible for touch’ing the file. For
example for the file prjlist.txt,

$_TMROOT $_TMREQPRJ

Figure 3-9: Example of a multiple project structure

Figure 3-10: Global SDE directory
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 57 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
The file loc_list.txt contains names of the components (interfaces) and their locations,
space separated, for example,

tmKernelComp1 c:/KERNEL/comps/tmKernelComp1 tmKernelComp2 c:/KERNEL/comps/tmKernelComp2
tmInfComp1 e:/INFRA/comps/tmInfComp1 ...

The file loc_list.mk contains the assignment of the makefile variables for the components’
(interfaces) locations, for example,

The loc_list.* files are regenerated when components are added. If you receive the
following message,

SDE2 cannot find the definition of _<your comp>_DIR. Update your prjlist.txt or loc_list.*
files.

then you have to regenerate your loc_list.* files. The generation is best done in the
following way:

• Delete your loc_list.* files (via clean_all or manually)

• Execute gmake makelist

The target makelist is responsible for regeneration of the loc_list.* files. In the following cases
loc_list.* files are updated:

• If they are not present

• If one of the directories or prjlist.txt has a later date, i.e., we have changed something
in the directory structure

• _<CompName>_DIR is invalid. This happens if we switch between Unix and NT.

All these cases cover majority of all possible cases when we have to regenerate loc_list.*
files.

In order to ensure the backward compatibility with the previous versions of SDE2, the
following behavior is defined. If the file prjlist.txt is not present, it is created and contains
the value of _TMROOT. In this way, the directories $(_TMROOT)/comps and
$(_TMROOT)/intfs are considered by default.

The advantages of this solution to the multiproject problem that is implemented in the
SDE2 approach are:

• No superfluous copies of component data.

• More structured, project-oriented development.

• Development of different projects simultaneously.

• Easy (source) release per project

• It is always possible to move/restructure your components in a different structure
without harming their functionality. For example, you can move all of them to one
comps directory.

_tmKernelComp1_DIR := c:/KERNEL/comps/tmKernelComp1
_tmKernelComp2_DIR := c:/KERNEL/comps/tmKernelComp2
_tmInfComp1_DIR := e:/INFRA/comps/tmInfComp1
...
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 58 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
• The development process is independent of the project structure. You write
REQUIRES = tmKernelComp1 tmInfComp1

LIBS = tmKernelComp1

and you do not care where tmKernelComp1 and tmInfComp1 are located.

A disadvantage with SDE2’s solution of the multiproject problem is that it is necessary to
use absolute include paths during the compilation of the component, which can be quite
long. But, because nearly all compilers/shells5 have no problems with long paths, the
effect of the disadvantage is marginal.

When you develop your components, take into account that they know nothing about the
locations of other components and interfaces, so do not include header files with absolute
locations or even with relative locations using a back path (i.e.../../comps/tmComp1/inc).

3.9.2 Practical recommendations for using multiproject SDE2

The above section, Multiproject implementation in SDE2, explains how to work with
multiple projects in SDE2. If you have more than one project and each project needs to be
built in different configurations, it is recommended you follow the methods given below.

• Edit the prjlist.txt file present in $(_TMROOT)/project and add an environment variable
$_TMREQPRJ. For example, $(_TMREQPRJ) $(_TMROOT)

• Create a separate batch file for each project configuration, to initialize the
corresponding environment variables for the required configurations.

• Add the definitions of the variables $(_TMREQPRJ) accordingly in each project
configuration-specific batch files.

• Also, define the variable $(_TMTGTBUILDROOT) differently in each batch file.

• A component should be stored in only one particular location. Do not keep multiple
copies of the same component.

• Now you can use SDE2 simultaneously for different projects based on different
configurations, by running the appropriate batch files.

This approach ensures that

• A single SDE2 installation is enough to perform multiproject operations and the user
need not have duplicate copies of any component.

• There is no interference between any two different projects, in that different loc_list.*
files are generated and the components are built in different locations because
$(_TMTGTBUILDROOT) is set differently for different projects.

3.10 Binary release

If you deliver your component together with your libraries, DLLs and/or object files, then
you make use of a binary release. SDE2 supports this process. SDE2 does not support a
binary release for *.l files, they can be generated easily by the build_exe.pl script.

5. Some UNIX shells support up to 5000 characters, others support 16,000.
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 59 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
3.10.1 Generation

SDE2 supports two types of binary releases:

• Binary release of libraries and DLLs

• Binary release of object files

3.10.1.1 Binary release for libraries and DLLs

You can generate a binary release for libraries and DLLs, if you set _TMTGTCOPYLIB to 1.
As a result, SDE2 will copy all the generated libraries and DLLs into your components’
lib directory. For example for a WinNT host and target,

This produces the following structure:

SDE2 prints the message:

It is important to know that SDE2 copies the DLLs, if any, to the directory name
determined from _TMDIVERSITY and _TMTGTREL.

3.10.1.2 Binary release for the object files

Generation of the binary release for object files is a typical BSL (board support library)
issue and you, as a developer, will not need this unless you work with BSL.

SDE2 makes a binary release of the object files if _TMTGTCOPYOBJ is set to one or more of
the produced object files, for example,
..\comps\tmComp1> set _TMTGTCOPYOBJ=tmComp1 tmComp4

If this variable intersects with one of the generated object files in the _SDE_OBJECTS
makefile variable (i.e., if such file is produced), this file is copied in the binary release.

..\comps\tmComp8> set _TMTGTCOPYLIB=1

..\comps\tmComp8> gmake
OR
..\comps\tmComp8> gmake _sde_bin_rel

Figure 3-11: Global SDE directory

copying the libraries files to h:/ccm_wa/moreuse/sde-kazakov/sde/sde_template/comps/tmComp8/lib/x86_nt_el_i486
...
copying the DLL files to h:/ccm_wa/moreuse/sde-kazakov/sde/sde_template/comps/tmComp8/lib/x86_nt_el_i486/_sp_g
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 60 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
SDE2 prints the message:

It is important to notice that this object file is copied into a subdirectory of the lib directory
in the component. The name of this directory is often different than the name of the
directory where the DLLs are produced. Here we will explain the reasons why it is done
so. The object file compilation depends on _TMTGTREL and _TMDIVERSITY. You can always
add new fields to _TMDIVERSITY, but the object file is sensitive only to a part of these fields.
So, the object file is placed in the directory which name depends on _TMTGTREL and
_<CompName>_DIVERSITY (extracted from _TMDIVERSITY in components diversity.mk file)
only. And example for comps/tmComp8 is:

Then tmComp8/lib/<lib.config>/_mp_g will be the directory name where the object
file is placed.

In this way you can add the new values to _TMDIVERSITY and they do not reflect to the
directory name where the object file is placed.

3.10.2 Using a binary release

3.10.2.1 Using a binary release for libraries and DLLs

You can use a binary release if you compile an executable/DLL, if such a binary release is
present. If you require a library/DLL with your LIBS statement, for example,
LIBS=tmComp8

SDE2 always looks for such library/DLL

• First in the generated release directory (i.e.,
<_TMTGTBUILDROOT>/comps/generated/lib/<your config>)

• If not present, in the components’ binary release

The only reason to give preference to the generated release directory is the fact that one
could make some fixes in the component and then regenerate this component.

3.10.2.2 Using a binary release for object files

This usage is supported only for the executables. You can use a binary release for the
object files if you set in your makefile:

copying the object files c:/b_result_1206/./comps/tmComp1/tmp/x86_nt_el_i486_g/src/tmComp1.obj to
h:/ccm_wa/moreuse/sde-kazakov/sde/sde_template/comps/tmComp1/lib/x86_nt_el_i486/_g

_TMTGTREL=debug
_TMDIVERSITY=_mp_flo_
_tmComp8_DIVERSITY=_mp # because tmComp8 knows only _mp_ and # _sp_ diversities.

REQUIRES += tmComp1
_SDE_OBJECTS += tmComp1.$(_SDE_O)
-include $(_tmComp1_DIR)/diversity.mk
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 61 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
SDE2 will find tmComp1.$(_SDE_O), if present in the binary release, but you should also add
tmComp1 to the REQUIRES section and if tmComp1/diversity.mk is present, you have to add it
manually to your makefile, because SDE2 needs the definition of _tmComp1_DIVERSITY, if it
is defined. You can get the same effect if you have tmComp1 in your LIBS section, but in this
case SDE2 will require tmComp1’s library (although it will not be used).

3.10.2.3 Advantages of a binary release approach

The binary release gives big advantages in the organizational aspect and we will illustrate
this with the following real example.

Let’s assume that you use a project containing 50-100 components and you have 10
developers, each of them producing new components. So, all of those developers should
use the same libraries/DLLs, but all of them should have their own release tree in order to
test their own projects. You can make a binary release for the used components and put
them, together with their binary release, on a network drive. The developers could use
these components setting in their <_TMROOT>/project/prjlist.txt file its name (up to the comps
directory), together with the name of its working project, for example,
n:/dvp_release/infra n:/dvp_release/kernal c:/my_prj

3.11 IDL support in SDE2

This section provides you with an overview of Interface Definition Language and
describes the location and usage of the IDL files in the SDE2 distribution

3.11.1 Interface Definition Laungage (IDL)

IDL is language-neutral Interface Definition Language. It is created and supported by the
OMG group (www.omg.com). The purpose of IDL is to define a general interface language for
header files and to be able to map these files to the header files for different languages,
such as C, C++, Java, Cobol, Ada, etc. The intention of IDL is to make communication
between the objects written in different languages easier and to provide support for
CORBA (Common Object Request Broker Architecture).

Next to OMG IDL, multiple (incompatible) dialects of IDL exist, most notably MIDL, from
Microsoft. For NXPIDL, (a subset of) the MIDL dialect is used. This includes the use of
various attributes, specified between square brackets, for example: [uuid(...)].

Each compiler supplier could provide its own tool to transfer IDL files to header files and in
some cases, to source files. For example, Sun Microsystems(c) provides an idltojava tool,
see java.sun.com. NXP Semiconductors provides its own tool for handling IDL files called
nxpidl both for NT, Unix and Linux platforms. The tool is distributed from the SoCDT/PID
department
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 62 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
3.11.2 Location of the IDL files

The IDL files are located in the subdirectory idl of the corresponding interface or
component directory.

In the case when the IDL files are located in the component, they are used to describe the
components that contain (one or more) coclasses that implement the IDL interfaces.
These IDL files are located in the comps tree, not in the intfs tree.The co-class definition
idl files will have the file extension *.cdl

In the case when the IDL files are located in the interface, they are used to describe the
interface definitions. These IDL files are located in the intfs tree.The interface definition
idl files will have the file extension *.idl

The intfs tree might also contain another type of idl file, used for type definitions.
Thease IDL files will have the file extension *.ddl

The header and guid source files are generated if an IDL rule is present. The locations of
the generated files is as follows:

For any interface definition idl file (*.idl)

<_TMTGTBUILDROOT>/intfs/generated/inc - for header files

<_TMTGTBUILDROOT>/intfs/generated/src - for guid c files

For any co-class definition idl file (*.cdl)

<_TMTGTBUILDROOT>/comps/generated/src - for guid c files

For any type definition idl file (*.ddl)

<_TMTGTBUILDROOT>/intfs/generated/inc - for header files

3.11.3 Usage

We are using a not-integrated approach. This means, that if you want to use the
generated header files, you should do some extra action: either copy them manually in the
inc interface directory, or set your makefiles to look at the location of generated header
files. Further, if you want to generate those files from SDE2, you should add an IDL target
in your targets list, for example,,

Figure 3-12: Location of IDL files

LOCAL_INCLUDES = $(_SDE_TMTGTBUILDROOT)/intfs/generated/inc
all: configuration idl lib
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 63 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
We support both 32- and 128-bit GUIDs (Global Unique IDentifier). By default we use
128-bit GUID. You can use a 32-bit GUID if you define _TMTGTGUIDS to 32. It will add the
following defines to your compilation line

IIt is important to know that we generate all header files (except those specified in the next
paragraph) based on the REQUIRES section of the makefile and local idl directory, for
which IDL file is found. SDE2 calculates the transitive closure of REQUIRES section to
claculate all required interfaces. If any of the interfaces among them is defined as idl,
SDE2 would generate the corresponding header files.,

During the generation of header files, there is a list of IDL files, which should not produce
header files. Those IDL files are used only because the nxpidl compiler does not compile, if
it does have them. This list is set in the _SDE_FILTEROUT_IDL makefile variable by default to
tmIUnknown.idl tmNxTypes.idl tmComGuid.idl and tmMidlCompt.idl . You can redefine it, if you have
other such IDL files.

Please check whether you have set in your project/sites/<_TMSITE>/<UNAME>.mk file:
IDLTOOL = nxpidl

for your platform (NT, Unix, Linux, Sun Solaris).

3.11.4 Binary Release of IDL-Guid files

SDE2 can generate the binary release of header files and Guid libraries, generated from
idl files.

The user needs to set an environmental variable _TMTGTCOPYGUIDS to 1

The header files generated from both interface definition file (*.idl) and type definition file
(*.ddl) would be copied on to <_TMROOT>/intfs/<intfsName>/inc directory.

The Guid library would be generated only if you are building either a dll or an executable.
SDE2 encapsulates this library with the generated dlls or executables. However, if
_TMTGTCOPYGUIDS is set to 1, this guid library (for example, guild_g.lib) would be copied to
<_TMROOT>/comps/<compName>/lib/<Lib Configuration>.

LOCAL_CFLAGS += -DTMFL_GUID_IS_32_BITS
LOCAL_CXXFLAGS += -DTMFL_GUID_IS_32_BITS

REQUIRES = dvp \
 dvpdebug \
 tmIUnknown \
 tmIClassFactory \
 tmIMem \
 tmCom
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 64 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
3.12 Qmore invokation from SDE2

Qmore qualifies a software component for reusability as per the standards defined in
MoReUse™. These standards are laid out, maintained and evolved by the System on
Chip – Design Technology group within NXP-CTO (SoCDT).

Qmore performs the checks on the components as per the MoReUse™ standards and
then certifies the component based on the results of these checks. As of this release,
Qmore has a command line interface only.

The Qmore tool performs its check based on a MoReUse Metadata File (MMF). Attributes
of the

CI and the checks to be performed on it can be specified in this file. Qmore follows this file
for

performing all the checks. In short, the course of Qmore can be configured by way of the
MMF.

Please refer to the Qmore user manual [QMORE] Qmore 03.01.00 User Manual, version
1.0, for more details on the MMF file and the Qmore tool.

The user can invoke Qmore tool, to run a compliance check on a particular component,
group of component or a product (A group of logically related components). AN
environment variable QMORE_HOME should be set to the location of the Qmore
installation directory

For example, QMORE_HOME = d:/qmore/bin

The user needs to type gmake qmore to invoke qmore on any particular component. By
default, Qmore would be run on that partticualr component, on which it is invoked. (Please
note that the component under test should contain a MMF file - <CompName>.ccf)

Qmore can be run on all components used to build an alpplication by using the build_exe
script as follows:

build_exe.pl apps/<ApplicationName> -target:qmore

We can also invoke Qmore on a set of components by specifying the environment
variable

QMOREPARENTDIR. We need to set this environment variable with the location of the
parent directory, which holds all the components under test.

For example, QMOREPARENTDIR = d:/sde_template/comps
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 65 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
We can also invoke Qmore on a product (A set of all related diredctory constituting that
product) by specifying an environment variable QMOREPRODDIR. We need to set this
environment variable with the location of the product directory.

For example, QMOREPRODDIR = d:/infra

Both these environment variables can have either relative path or obsolute path settings.

3.13 SDE2 Perl Scripts

3.13.1 Perl

The build scripts require Perl version 5.005_03 (Unix distribution) / 5.6.1 (Windows NT or
2000 or XP distribution) or later.

If necessary, Perl can be downloaded for Windows NT/2000/XP from
http://www.activestate.com/Products/ActivePerl/download.plex

SDE2 additionally provides the scripts in executable form for WinNT. According to the
supplier, these executables should also work on Windows 98, 2000 and XP. They can be
downloaded form the SDE2 website at:
http://pww.rtg.sc.philips.com/cmd/html/sde2_1_5.html

3.13.2 Build scripts overview

The SDE2 is supplied with three build scripts:

• build.pl – Used for building all relevant configurations of one or more components; it
sets the relevant environment variables. It does not set platform-specific settings;
they should be set in advance. A developer and/or tester will usually only use it to
build one component. The “more components” application is meant for configuration
managers. The use of the script is described in Section 3.13.3, Build.pl on page 67.
For more details see the User’s Manual of Build Component Script

• build_exe.pl – Used for building an executable and its required libraries for one specific
configuration. This script is meant for the developers and testers of components. The
use of this script is described in Section 3.13.4, Build_exe.pl on page 72.

• requires.pl – Computes the list of all components and interfaces that are needed to
build a component. The use of this script is described in Section 3.13.5, Requires.pl
on page 75.

• auto_det.pl – Used to check/validate the environment being set, to build the applications
or components and also the makefiles of the components for any possible errors. The
use of this script is described in Section 3.13.6, Auto-detection script (auto_det.pl) on
page 75.

• makefile_template.pl – Used to generate a template makefile to be supplied to other
customers to build the reusable componets/applications in their environment. The
use of this script is described in Section 3.13.7, Makefile Template Script
(makefile_template.pl) on page 76.
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 66 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
• generate_diversity_mk.pl – Used to generate diversity.mk file based on the entries in
configurations.txt file. The use of this script is described in Section 3.13.8, Script to
generate diversity.mk file (generate_diversity_mk.pl) on page 79

• application_diversity.pl – Used to generate all possible diversity values (including
dependent components diversity information) that needs to be set in the environment
to successfully build an application or a component based on the entries provided in
configurations.txt file. The use of this script is described in Section 3.13.9, Script to
display the diversity information(application_diversity.pl) on page 79

• findtrailingspaces.pl – Used to find out trailing spaces in makefiles in a component or in
SDE2 makefiles. The use of this script is described in Section 3.13.9, Script to display
the diversity information(application_diversity.pl) on page 79

• The scripts are located in the directory sde/scripts.

The first two build scripts are tools for building the components and executables. All builds
can be performed without using the build scripts. The advantage of build scripts is:

• They change the directories, environment variables, invoking make/gmake

• build_exe.pl determines the correct order in which to do this

• They report everything in one (two) file(s)

• It is convenient for overnight builds, etc.

The scripts generate logging information in log files. In Section 3.13.6, Auto-detection
script (auto_det.pl) on page 75, the log files are described in more detail. The scripts also
print all the information to stdout and/or stderr.

3.13.3 Build.pl

3.13.3.1 Input of the script

The script needs the following information:

• Per component a configuration file.

This is by default the configurations.txt file. See Section 3.13.3.2, Component
configuration files on page 68 for more information on this file.

• The overall project configuration file

This is the file configurations.txt that is available in the $(_TMPROJECT) directory. See
Section 3.13.3.3, The overall configurations.txt file on page 70 for more information
on this file. It is also possible to tell the script to use a specific configuration file (for
example, a common project configuration file) by using the -config option (see Section
3.13.3.4, Invoking build.pl on page 71).

• A list of components to build.

This is by default the buildlist.txt file that is available in the $(_TMPROJECT) directory.
There are two ways to supply the list to the script:

n Including the components explicitly on the command line (see Section 3.13.3.4,
Invoking build.pl on page 71 for more details).

n Telling the script to use an alternative ‘buildlist’ file by using the -list option (see
Invoking build.pl for more details).
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 67 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
The buildlist.txt file contains per line the location of the main directory of a component.
Below is an example of a buildlist.txt file for a project containing two components and an
overall application:.

3.13.3.2 Component configuration files

Each component that is part of the build process must contain a configurations.txt
file that is located in the main directory of the component. Example: for the component
Comp1 this directory is comps/tmComp1.

• The configuration file contains the locations of the makefiles of the component and
per makefile
The location of one makefile related to the location of the configurations.txt file.

• A set of valid configurations for that makefile.

• The location of (test) executable makefiles related to the location of the configurations.txt
file.

• A set of valid configurations for each such (test) executable.

This is done in the following way:

This is implemented as shown below.

A configuration is specified as follows:

In case there is no component makefile (only executables are present), the part before the EXECUTABLE line is not
present.

The three fields (_TMTCSHOST, _TMBSL, _TMLINKTYPE) only apply for executables, not for
the components. The field _TMTOOLCHAIN is optional, the default value is empty.

comps/tmApe
comps/tmNut
apps/overall

<location makefile 1>/makefile
configuration1_1
configuration1_2
...
EXECUTABLE
<location makefile 2>/makefile
configuration2_1
configuration2_2
...
EXECUTABLE
<location makefile 3>/makefile
configuration3_1

<_TMTGTCPUCLASS>~<_TMTGTOSCLASS>~<_TMTGTOS>~<_TMTGTENDIAN>~
<_TMTGTCPUTYPE>~<_TMDIVERSITY>~<_TMTGTREL>~<_TMTCSHOST>~<_TMBSL>~
<_TMLINKTYPE>~<_TMTOOLCHAIN>
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 68 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
For an explanation of the fields, see Section 3.2.1, Selecting a configuration on page 17.
The _TMTCSHOST field is only present for the tm-psos configuration class. The _TMDIVERSITY
field is discussed in Section 3.5.1.1, Extend the makefile with a _TMDIVERSITY selection
on page 37. The last three fields are optional. They are only relevant for executables. The
_TMBSL and the _TMDIVERSITY fields may be empty.

Note: In case the _TMDIVERSITY field in the configuration file is empty, the script uses the
value of the environment variable of the same name (which may also be empty). We
recommend you leave this field empty in your makefiles. One cannot predict what kind of
diversity product’s user will define for a component. If the platform does not generate DLLs
this is not a problem. However, all the DLLs end up in one directory and its name depends
on _TMDIVERSITY. So, we cannot change _TMDIVERSITY during the (build.pl) build process,
otherwise the build can fail.

In the current release of SDE2, _TMLINKTYPE does not play a role in the compilation
process except for tm_psos configuration. It can be set to static and dynamic without any
difference for the output files. The DLLs’ generation depends on the EXPORTS variable,
see Section 3.6, Dynamic link libraries (DLLs) on page 42. The link type for TriMedia is set
to be dynamic if there is at least one DLL. The standard link types for Microsoft compilers
are used. The EXETYPE:DYNAMIC option for them is used when building a virtual device
driver (VxD), so there is nothing to do with _TMLINKTYPE field. It can be set as a separate
option.

The following fields may be substituted by a wildcard (*):

• _TMTGTENDIAN

• _TMTGTREL

• _TMTCSHOST

• _TMLINKTYPE

• _TMBSL

In this way one line can specify multiple configurations.

Note that the configuration file can contain white lines and comment lines. Comment lines
start with a #. The file can contain space, tab and \^M (control-M) symbols.

Example of a comps/tmosal/configurations.txt (_TMTOOLCHAIN is not present, the
default empty value is accepted):

makefile
tm ~psos~psos200~* ~tm32~_multi_~*
tm ~psos~psos200~* ~tm32~_single_~*
mips ~psos~psos250~eb~r3940~debug
EXECUTABLE
tst/Tst1/makefile
tm ~psos~psos200~* ~tm32 ~ ~* ~nohost ~ ~*
EXECUTABLE
tst/Tst2/makefile
mips ~psos~psos250~eb~r3940 ~ ~debug
~_p4032~static
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 69 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
The first line indicates that there is a makefile at location $(_TMROOT)/comps/tmosal.
This makefile can be built for some tm-psos configurations with
_TMDIVERSITY=_multi_. It can be built for some tm-psos configurations with
_TMDIVERSITY=_single_. It also can be built for exactly one mips-psos
configuration.

The second makefile is at location comps/tmosal/tst/Tst1 and can be built for some
tm-psos configurations with _TMDIVERSITY is empty. The last makefile is located at
comps/tmosal/tst/Tst2 and can be built for exactly one mips-psos configuration
with _TMDIVERSITY is empty.

3.13.3.3 The overall configurations.txt file

It can be the case that a development project imports a component that is buildable for a
Trimedia as well as a mips environment, while the project is only interested in a Mips
environment. Each development project has got a configurations.txt file that describes
what configurations are relevant for the project. The file is located by default in
$(_TMPROJECT). However you can specify the project configuration file via the
command line. You have to specify
-config:<FilePath/FileName> in the build.pl command line.

Each line of the configuration file contains a configuration. A configuration equals the
configuration as described in the previous section (3.11.3.2) except that the
_TMDIVERSITY field is not there.

Example of a project configurations.txt file:

tm ~psos~psos200~* ~tm32 ~* ~nohost~~*
mips~psos~pso250 ~eb~r3940~debug~_p4032 ~ static
mips~ce ~ce212 ~el~r3000~* ~vpci1 ~ *

...............................
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 70 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
3.13.3.4 Invoking build.pl

If all environment variables from Table 3-2 Additional environment variables per
configuration class and Table 3-5 The generic environment variables are properly set, the
script can be invoked in the following way:

The optional -c (short for continue) denotes that the script will proceed when an error is
encountered. Default behavior is, that the script halts when an error is encountered.

The buildables can be specified in one of the following ways:

• -list:<Path/ListFileName> – Build all components listed in file Path/ListFileName using the
default project configuration file <_TMPROJECT>/configurations.txt.

• -config:<Path/ConfFileName> – Build all components listed in the default buildlist file
<_TMPROJECT>/buildlist.txt using the project configuration file Path/ListFileName

• -d – Suppress the DLL build. DLLs are not generated.

• -dbg – Prints to the standard output scripts’ debug information during the execution
process.

• -target:<target name> – Execute not default target for each of the components, example
clean target.

• <C1> <C2>.... – Build the components <C1>, <C2> etc.

• -h – Prints help information and exit.

Examples of how to execute a build:

3.13.3.5 Output of the script

The results of the build script are reported on ‘standard out’ along with the elapsed time
(time taken to build each component) and also written onto two files: build_script.log and
build_script_report.log in the _TMREPORTS directory.

• build_script.log contains all the information about the build process.

• build_script_report.log contains a summary of the results and list the build errors, if any.

There are three possible build results for each platform/configuration:

• Built successfully

• Built with warnings

• Build failed

perl build.pl [-c] [-d] [-h] [-dbg] [-target:<target name>]
[-list:<Path/ListFileName>]
[-config:<Path/ConfFileName>] <C1> <C2> ...

perl build.pl -list:c:/ccm_wa/prjcomps.txt
perl build.pl –c -config:c:/cfg_x86.txt
perl build.pl -d comps/tmosal comps/tmml
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 71 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
NOTE: When using build.pl for an application that has dependencies on multiple
components/libraries make sure that all the required componets are built for required
flavors before building the application. buildlist.txt should be updated carefully based on
this dependencies.

3.13.4 Build_exe.pl

The script build_exe.pl builds multiple executables and its required libraries. It requires that
the relevant environment variables from Table 3-1, Table 3-2 and Table 3-5 have been set
in advance.

The script is invoked as shown below:
perl build_exe.pl [-b] [-c] [-dbg] [-g|g: <filename>] [-h] [-l] [-list:<file name>] [-quiet] [-showtime] [-target:<target
name>] <location of executable-makefile>

• -b – forces a build, even if a binary release is present (optional)

• -c – the script will proceed when an error is encountered (optional)

• -dbg – prints to the standard output script’s debug information during the execution
process

• -g|g:<filename> – prints the dependency graph information (optional) on STDOUT or
<filename>

• -h – prints a help information and stops (optional)

• -l – generates only *.l files and stops (optional)

• -list <filename> – File that contains the list of applications to be built

• -log – Prints the information onto the report logfile (optional)

• -quiet – Prints a brief information of the build(optional)

• -showtime – Prints the table of time taken to build all the components individually and
also the total time taken to build the application and its dependants (optional)

• -target:<target name> – executes the target <target name> for each of the components,
transitively closed with LIBS and JAVA_REQUIRES dependency. For example,
-target:clean will clean all libraries and intermediate files required from an
executable/component. (optional)

Invoking the script results in building of all the executables and its required libraries as
specified in the makefile. It will be built for the current configuration. For example,
perl build_exe.pl -c -b comps/tmComp1/tst/Tst1
perl build_exe.pl -c -b comps/tmComp1/tst/Tst1 apps/helloworld
perl build_exe.pl -list appslist.txt

3.13.4.1 Two iteration process with build_exe.pl

As described before, build_exe.pl uses the current settings of environment variables such as
_TMTGTOS, _TMTGTREL, _TMDIVERSITY, ... and it does not change the values of these
variables during the build process. It is doing two passes. In its first pass, it builds
recursively *.l files, see Section 3.7.2, DependsOn relation. These files give information
about:
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 72 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
• Required libraries which have to be built; all libraries are determined using the
transitive closure of LIBS and JAVA_REQUIRES section, see Section 3.7, Libraries and
the LIBS section.

• Required build modes (debug/assert/retail/trace). These modes may be different from
the current build mode set in _TMTGTREL.

The script analyzes the information and computes the correct build order. That means if
component A requires component B, component B is built before component A.

If you are building only a static library, you do not need this script, because the build
process does not require presence of other libraries. However, if this is the case,
build_exe.pl prints a warning message and builds all libraries determined using the transitive
closure of the LIBS section. This is done in order to keep the behavior of the script
consistent for executables and components.

In the second pass the script is doing the real build, based on the build order. If the -b
option is not specified, it first checks whether there exists a binary release of the static
library with the appropriate name. If so, the build process is skipped. In all other cases, the
build process is started. If the build script discovers a discrepancy between the default
build mode and the required build mode, it executes one of the extra goals _force_debug,
_force_assert, _force_trace or _force_retail. More about this is discussed in the next section.

3.13.4.2 Mixing debug/assert/retail/trace diversities and build_exe.pl

When developing an application, it is very helpful to use some set of libraries in a retail
mode and others in a debug mode. This section describes a way to do this. The
underlying issues are similar to those described in Section 3.7.3, Overriding default
diversities and *.l files on page 47.

In static builds, diversities are identified using suffixes (_g, _a, etc.). This method works for
static builds. The situation is more complex for DLLs, and that is not covered here.

The application is responsible for specifying the mixture of suffixes. This information is
given in the application's makefile. For every library specified in the libs section, the
application makefile can also have a matching "suffix" entry.

For example: Build the application in debug mode. This allows for debugging parts of the
applications that need debugging. Use the "suffix" command to specify that most libraries
are to be used in "assert" mode so as to minimize the impact of the debugging on the
overall system.

In this example makefile excerpt, the application is designed to be built in debug mode
with a mixture of library flavors.

#---
Required components
#---

REQUIRES =
\

tmOsal
\

tmUtil
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 73 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
3.13.4.3 Output of the script

The results of the build script are reported on ‘standard out’ along with the elapsed time
(time taken to build each component), also written onto the file: build_exe_report.log in the
subdirectory of _TMREPORTS directory, if the -log command-line option is used. The name of
the subdirectory is determined by the configuration and current date and time. In this
order, you can be sure that if you run multiple scripts, they all will have their output files in
a different directories.

• build_exe_report.log contains a summary of the results and list the build errors, if any.

There are two possible build results for each component:

• Built completed

• Build failed

\
tmMl

\
tmbslCore

\
tmbslBoards

\
tmDbg

\

LIBS
= \

tmDbg
\

tmSpOsal
\

tmUtil
\

tmMl
\

tmbslCore
\

tmbslBoards
\

_tmDbg_SUFFIX = _g # use the debug version of this one
_tmSpOsal_SUFFIX = _a # use the assert version
_tmutil_SUFFIX = # use the retail version
_tmml_SUFFIX = _g # use the debug version of this one
_tmbslCore_SUFFIX = _a # use the assert version
_tmbslBoards_SUFFIX = _a # use the assert version
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 74 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
3.13.5 Requires.pl

The script requires.pl generates a list of components and interfaces that have to be built
before a specific component can be built. Here, instead of the transitive closure of the LIBS
relation as in the previous chapter, we are looking for the transitive closure of the
REQUIRES and JAVA_REQUIRES relation. The idea behind this script is that you can use one
component only if you have all the required components. So, if you get a component, you
should get all the required components and interfaces.

The script is invoked in the following way:
perl requires.pl <components root directory>

For example,

The :: is used as a separator between the component name and all required components.

3.13.6 Auto-detection script (auto_det.pl)

This script tests the settings of required environment variables and component makefiles
of SDE2. This script is capable of testing both the environment and the component
makefiles separately or together, depending on the option selected.

This script is designed for all SDE2 users and it helps you in identifying any deviations in
the settings of environment and component makefiles, for a successful build.

This script allows you to run only a first-level check. It is recommended you run this script
before sending queries/questions to SDE2 team.

The auto-detection script is invoked as follows:
perl auto_det.pl -env|-comp:(<CompName>/all)|[-showall]|-h

• -env option allows the script to test the environment variables.

• -comp:<CompName> option makes the script to check only the component makefile
variables for the specified component name in <CompName>. <CompName> should always
start with comps directory. For example: comps/tmComp1, comps/tmReal etc.

• -comp:all option makes the script to check the component makefile variables of all the
components specified in loc_list.* files.

• [-help] option prints help/usage and version information.

• [-showall] option prints detailed messages during the execution of the script.

Examples of how to execute the script:

>perl requires.pl comps/tmComp15/tst/Tst1 comps/tmComp3
comps/tmComp15/tst/Tst1::comps/tmComp15 comps/tmComp1 comps/tmComp2
comps/tmComp3:: intfs/ItmReal comps/tmRealFloat

perl auto_det.pl -env
perl auto_det.pl -comp:comps/tmComp1 -env
perl auto_det.pl -comp:all -env -showall
perl auto_det.pl -h
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 75 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
3.13.7 Makefile Template Script (makefile_template.pl)

This script (makefile_template.pl) produces makefile template, for editing application
makefiles, to build applications outside SDE2. The makefile template is produced, for the
current configuration, set in the environment. This script produces a template makefile in
the _TMREPORTS/<configuration> directory.

Currently the following configurations are supported:

x86_nt, tm_psos, x86_ce, arm_ce, mips_ce, x86_vxworks, arm_vxworks, arm_nullos, hp_nullos.

The makefile template script is invoked as follows:
perl makefile_template.pl [-h]

• -h – prints the help message.

• generates the makefile template without any options.
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 76 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
The sample below provides an example of a makefile generated in _TMREPORTS/x86_nt
directory for x86_nt configuration.

##
Makefile template for building application outside SDE2
##
#---
#This is a makefile template, that can be used to build an application #out side SDE2 environment. The user can create his
own directory #structure to place the required source files, header files, libraries #and build tools. Those directory
locations need to be specified in the #appropriate locations in this makefile template, to make this a complete #wokable
makefile
--
Enter the location information here. Please do not add any extra space #at the end of line
#---
#ROOT_LOCATION --> Location of the root directory
#SRC_LOCATION --> Location of source files
#INC_LOCATION --> Location of header files
#LIBS_LOCATION --> Location of library files
#OBJ_LOCATION --> Location of object files
#EXE_LOCATION --> Location of executable generated

ROOT_LOCATION =
SRC_LOCATION =
INC_LOCATION =
LIBS_LOCATION =
OBJ_LOCATION =
EXE_LOCATION =
--
Enter the source file information here.Please do not add any extra space at the end of line
--
C_SOURCES = $(SRC_LOCATION)/<C sourcefile>
C_FILES = $(notdir $($(C_SOURCES))
CXX_SOURCES = $(SRC_LOCATION)/<C++ source file>
CXX_FILES = $(notdir $($(CXX_SOURCES))
S_SOURCES = $(SRC_LOCATION)/<Assembly source files>
S_FILES = $(notdir $($(S_SOURCES))
#---
Definition of object files
#---
OBJECT_FILES += $(CXX_FILES:%.cpp=$(OBJ_LOCATION)/%.obj) \

$(C_FILES:%.c=$(OBJ_LOCATION)/%.obj) \
$(filter %.obj,$(S_FILES:%.s=$(OBJ_LOCATION)/%.obj)\
$(S_FILES:%.S=$(OBJ_LOCATION)/%.obj)
$(S_FILES:%.asm=$(OBJ_LOCATION)/%.obj))
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 77 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
#--
Definition of Library file
#---
LIBRARY_FILE = $(LIBS_LOCATION)/<Enter the library name>.lib
#--
Definition of executable file
#---
EXE_FILE = $(EXE_LOCATION)/<Enter the executable name>.exe
#--
Definition of Compiler options
#---
sde_copts := -DTMFL_REL=TMFL_REL_DEBUG -Zi -DDEBUG -Od -MDd -W4 -DWIN32 -D_WIN32 -D_WINDOWS
-D_X86_ -D_MBCS -D_USRDLL -DX86_CPU -D_M_IX86=1 -I. -I$(SRC_LOCATION) -I$(INC_LOCATION) -I<Add
other include Paths Here> -GX -Zm1000 /nologo
sde_cxxopts := -DTMFL_REL=TMFL_REL_DEBUG -Zi -DDEBUG -Od -MDd -W4 -DWIN32 -D_WIN32
-D_WINDOWS -D_X86_ -D_MBCS -D_USRDLL -DX86_CPU -D_M_IX86=1 -I. -I$(SRC_LOCATION)
-I$(INC_LOCATION) -I<Add other include Paths Here> -GX -Zm1000 /nologo
sde_aopts :=
#--
Definition of Linker options
#---
sde_ldopts := /nologo -DEBUG /WARN:3 /LIBPATH:d:/progra~1/micros~1/VC98/lib
VPATH = $(SRC_LOCATION) $(OBJ_LOCATION) $(LIBS_LOCATION)
#--
Compiler/Linker toolchains
#---
CC = cl.exe
CXX = cl.exe
IDL =
LB = lib.exe
AS =
LD = link.exe
#--
Rules for generating object files
#---
$(OBJ_LOCATION)/%.obj: %.c

mkdir -p $(dir $@); \
echo compiling $<; \
$(CC) $(sde_copts) -c -Fo$@ $<

$(OBJ_LOCATION)/%.obj: %.cpp
mkdir -p $(dir $@); \
echo compiling $<; \
$(CXX) $(sde_cxxopts) -c -Fo$@ $<
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 78 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
3.13.8 Script to generate diversity.mk file (generate_diversity_mk.pl)

This script (generate_diversity_mk.pl) generates diversity.mk file of a component based on the
configurations.txt file located in the same component.

This script is invoked as follows:
cd <component directory>
perl $_TMROOT/sde/scripts/generate_diversity_mk.pl

• Generates the diversity.mk file based on the component’s configurations.txt file.

3.13.9 Script to display the diversity information(application_diversity.pl)

This script (application_diversity.pl) generates a list of all possible combinations of diversity
required to build an application based on the all the dependent components’
configurations.txt files.

This script is invoked as follows:
cd <application/component directory>
perl $_TMROOT/sde/scripts/application_diversity.pl

• Displays the possible combinations of diversity that needs to be set based on all the
dependent components’ configurations.txt files

$(OBJ_LOCATION)/%.obj: %.s
mkdir -p $(dir $@); \
echo compiling $<; \
$(AS) $(sde_aopts) -c -Fo$@ $<

$(OBJ_LOCATION)/%.obj: %.asm
mkdir -p $(dir $@); \
echo compiling $<; \
$(AS) $(sde_aopts) -c -Fo$@ $<

#--
Rules for generating Library files
#---
$(LIBRARY_FILE): $(OBJECT_FILES)

mkdir -p $(LIBS_LOCATION); \
echo building library $@; \
$(LB) /nologo /verbose /out:$@ $(OBJECT_FILES)

#--
Rules for generating Executable
#---
$(EXE_FILE): $(LIBRARY_FILE) $(OBJECT_FILES)

mkdir -p $(EXE_LOCATION); \
echo building executable $@; \
$(LD) $(OBJECT_FILES) <Other Object Files> -LIBPATH:$(LIBS_LOCATION) <add other libs location if

any> $(LIBRARY_FILE) <Add other DLLs and Libraries in correct order> \
$(sde_ldopts) /out:$@

#---
Define the required target that you need to build
Choose either $(LIBRARY_FILE) or $(EXE_FILE) for building library or executable respectively
#---
all: $(OBJECT_FILES) $(LIBRARY_FILE) $(EXE_FILE)
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 79 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
3.13.10 Script to find trailing white spaces (findtrailingspaces.pl)

This script findtrailingspaces.pl detects leading white spaces in a makefile mentioned in the
command line. If no files are specified in the commandline then the script checks all the
SDE2 makefiles.

This script is invoked as follows:
perl $_TMROOT/sde/scripts/findtrailingspaces.pl -f makefile

• Checks makefile in the current working directory for possible trailing white spaces.
perl $_TMROOT/sde/scripts/findtrailingspaces.pl

• Checks all the *.mk files in the SDE2 installation directory.

3.13.11 Setting environment variables of SDE2(setenv.bat)

This is top level batch file that creates batch file containing configuration specific
environment variables, runs the batch file and sets environment variables for that
configuration to run SDE2. It also verifies the settings of the required environment
variables,components and associated makefiles of SDE2 by executing
auto-detection(auto_det.pl) perl script.

Setenv.bat file is invoked as below:

The batch file calls the following perl scripts:

• EnvCreate.pl

• Runs the batch file and sets environment variables for SDE2

• AutodetExecute.pl

3.13.11.1 EnvCreate.pl

This script creates the configuration specific batch file at the following location.

<SDE2 installation Directory>\<SDE2 Root
Directory>\project\sites\<site name>

For example:
c:\sde2_23\sde_template\project\sites\blrsdm

The name of batch file created is as below
<_TMTGTCPUCLASS><_TMTOOLCHAIN}>_<_TMTGTOSCLASS>_<_TMTGTREL>_<_TMLINKTYPE>_
<_TMDIVERSITY>_<_TMTGTENDIAN>.bat

It invokes graphical user interface to set the general environment variables as mentioned
in Table 3-5 The generic environment variables.

Another graphical user interface is called to set the specific environment variables for the
configuration class selected as mentioned in Table 3-2 Additional environment variables
per configuration class.

>setenv.bat
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 80 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
At present, the configuration classes as mentioned in Configuration Class column of
Table 3-2 are supported.For the configuration classes not mentiond in Table 3-2, only the
generic environment variables are written in the batch file.

3.13.11.2 AutodetExecute.pl

This script calls auto_det.pl. It thus checks the presence and settings of the
environment variables and component makefile variables.

3.14 Build flavors

In this chapter different minor so-called flavors in SDE2 are explained.

3.14.1 Dependency generation

In SDE2 dependencies are automatically generated. Changes to the files are tracked by
means of time stamps. Dependency checking can be switched off by setting the
environment variable _TMNODEPENDENCIES to 1. Omitting dependency checking results in
shorter compilation time. The disadvantage is that it will not regenerate your libraries if
one of required header files is updated.

For all configuration and source files (*.c, *.cpp, *.s, *.S, *.asm) the corresponding file with
dependency information is generated unless the environment variable
_TMNODEPENDENCIES is set to 1. The name of the generated file is the same as the name
of the corresponding source file, but with extension d instead of c, cpp etc.

Note: Working with dependencies and configuration management tool might be
ambiguous. If you delete a new version of a file, this file will be replaced with an older
version with an older date. So, the corresponding library will not be updated if you have
generated *.d files.

Note: It is not allowed in SDE2 to have source files with the same name and different
extension in the same directory in one component.

Per source file <NAME>.<EXT> the following file is generated:
<_TMTGTBUILDROOT>/comps/<component>/tmp/<_TMTGTCPUCLASS>_<_TMTGTOSCLASS>_<_TMTG
TENDIAN>_<_TMTGTCPUTYPE>/src/<NAME>.d

For executables the following file is generated:
<_TMTGTBUILDROOT>/comps/<component>/tst/<tst
dir>/tmp/<_TMTGTCPUCLASS>_<_TMTGTOSCLASS>_<_TMTGTENDIAN>_<_TMTGTCPUTYPE>/src/<N
AME>.d

This file contains the list of all files on which the source file depends.

3.14.2 Copying objects into the release directory

SDE2 provides a target for copying (object) files into the release directory. The full names
of the object files have to be specified into the _SDE_COPYLIST and the _sde_copy_objects
target has to be invoked. Example (in the makefile):

_SDE_COPYLIST=$(DIR_INTERM)/src/tmComp1.$(_SDE_O)
all: configuration lib _sde_copy_objects
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 81 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
3.14.3 Build diagnostics

While building, extra build information is available by setting the environment variable
_TMECHO to 1.

3.14.4 Memory image build support

SDE2 supports a memory build image for TriMedia. The image is built instead of a *.out file
if both _TMSTARTADDR and _TMENDADDR are defined correctly. Additionally you can define:

• _TMMMIOBASE – Base address of MMIO. If it is undefined, a value of 0x1be00000 is used
by default.

• _TMCLOCKFREQ – TriMedia clock frequency. If it is undefined, a value of 100000000 is
used by default.

3.14.5 Debugging with SDE2

The _sde_print_var new target is introduced as follows.

It can be used for SDE2 debugging purposes, for example
make var=DIR_INTERM _sde_print_var

prints the value of DIR_INTERM and stops.

3.14.6 Debugging tools and SDE2

Some debugging tools, like Microsoft debuggers and the TriMedia debugger, need
additional information to locate where the source files are. If this information is not
available, you have to point each time to the location where source code is. This is
inconvenient and therefore SDE2 provides a solution to make this process easier by using
the absolute path of the source files rather than their relative path.

3.14.7 Using source files outside the component

In some cases a component file uses a source file that is located outside the directory
scope of the component. An example is an interface with a piece of test code. This test
code is used by the test code of a component implementing this interface. By extending
the VPATH in your makefile you can deal with this situation. By definition VPATH specifies a
search list of directories that make (gmake) should search for all files, including files which
are targets of rules.

Below is a snapshot of a makefile of a test executable using a source file that is at another
location (the intfs directory)

_sde_print_var:
$(_SDE_ECHO)$(ECHO) "$(var)=$($(var))"

C_SOURCES = \
src/main.c \
Itm2dPixmapFact/src/tm2dTestThisInterface.c
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 82 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
3.14.8 User-defined variables

SDE2 supports user-defined variables. They can be used in SDE2 and it is guaranteed
that they will not be touched in future SDE2 releases or coincide with other user-defined
variables.

The variable format is
SDEUD<Your component name>_<What ever the user has defined here>.

SDE2 also guarantees that it will not use _TM_USER_DEF_<What ever the user has defined here> in
SDE2 makefiles.

3.14.9 Third-party software

Some software components or executables may require third-party software. SDE2
contains primitives to introduce additional search paths for third-party header files and
linking third-party libraries from arbitrary locations.

Additional search paths for header files can be specified in makefiles (of components or
executables) by modifying the line:
DIR_INCLUDE =

into
DIR_INCLUDE = <path1> <path2> ...

For example,
DIR_INCLUDE = $(MY_PATH1)/inc $(MY_PATH2)/inc

Additional libraries can be specified in makefiles of executables by adding the line:
EXTERNAL_LIBS = <path/lib1> <path/lib2> ...

For example,
EXTERNAL_LIBS = $(MY_PATH1)/lib/lib1 $(MY_PATH2)/lib/lib2

The EXTERNAL_DLLS are explained in Section 3.6, Dynamic link libraries (DLLs) on page
42.

The example for EXTERNAL_LIBS is given in tmComp10/tst/Tst1. As an external
component Comp1 is used, which is artificial (because Comp1 is an internal component), but
it is useful for test purposes.

Note that components that require non-SDE2–compliant software are less reusable.
Avoid links to external software as much as possible. Also note that SDE2 adds the library
extension to the external library names.

3.14.10 Use of inline qualifiers

The SDE2 CCB has decided not to use inline qualifiers in public header files. However they
can be used in private header files and source files. The problems arise when one uses
inline in interface files. Then the implementations of these functions are an integral part of
the interface description. Therefore, it is impossible for a developer to define his/her own
implementation of the interface.
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 83 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
3.14.11 Other targets

SDE2 supports other targets:

• clean – Calls clean_lib or clean_target depending on whether makelib.mk or maketarget.mk is
invoked in the component’s makefile.

• clean_lib – Cleans the corresponding libraries and their temporary files.

• clean_target – Cleans the corresponding executables and their temporary files.

• clean_all – Removes files <_TMROOT>/project/loc_list.* and removes the
_TMTGTBUILDROOT directory if it is not empty. If _TMTGTBUILDROOT is empty, the
following directories are removed: <_TMROOT>/comps/generated and
<_TMROOT>/<DIR_LOCAL>/tmp

• help – Prints help information.

3.14.12 SDE2 warning messages

SDE2 checks for errors and prints the warning message if these errors are present. You
can also put your custom warning message in the variable _SDE_WARNINGS.

SDE2 prints the following warning messages in the respective cases:

Warning: The interfaces $(_SDE_MISSING_INTERFACES) are missing in the project tree

Warning: $(notdir $(DIR_LOCAL)) is removed from the LIBS section, as it is a self
reference

Warning: Circular dependencies detected! Check LIBS section of <related CompNames>
components

Warning: <CompName>.l files is/are missing. Please read Chapter 3.7.4 of the User
Manual!!

Warning: <CompName>.j files is/are missing. Please read Chapter 3.7.4 of the User
Manual!!

3.14.12.1 Circular dependencies

If there is a circular dependency graph, SDE2 prints an warning. The dependency graph is
determined from the LIBS relation in your makefiles. Even if your component refers to
itself, it is an error. The reason for this is that it is not possible to make the correct library
line for the linking of the final executable. The circular dependency arises, for example, if
component A needs the interface and implementation of B’s interface, and component B
needs the interface and implementation of A’s interface.

3.14.12.2 The loc_list files

The loc_list.txt and loc_list.mk files are generated from prjlist.txt files. They are updated if you
touch the prjlist.txt file. SDE2 reports a warning if _<CompName>_DIR is not defined/found,
i.e., something is wrong/not updated. The loc_list files are updated if you add a new
component, if you touch your prjlist.txt, or if your definition of _<CompName>_DIR is invalid.
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 84 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
3.15 Component makefile manual

This section is a reference manual for a component makefile. It includes description of the
recommended component makefile structure, the list of makefile variables defined with +=,
tables with all makefile and environment variables used in SDE2, and a short description
of all example components.

3.15.1 Structure

The makefile consists of several parts. Some of these are mandatory, some are optional.
The order of the parts is also mandatory in some cases and can be varied in other cases.
It is strongly advised to use the same order for the different parts as described in this
manual in all cases.

This structure includes only the basic settings for Java compilation. You can find the
complete list of all settings in Appendix A.

3.15.1.1 Component name and include environment.mk

This is the first part. The part is mandatory:

Here you have to set the value of DIR_LOCAL in your component’s directory.

You must not change the include line.

3.15.1.2 C, C++ and ASM source files

This part contains at least one reference to C, C++ or ASM file(s). It is as follows:

Here you have to list your C++ sources in CXX_SOURCES and your C sources in
C_SOURCES. The configuration sources (located in your component’s cfg directory) are in
CFG_SOURCES and the assembler files are in S_SOURCES. It is possible to use some custom
environmental variables to set the directory path.

The path description is relative. It starts from <_TMROOT>/<DIR_LOCAL>.

It is not permitted to use source files outside the component directory structure. The
exceptions are for executables. You can access a platform-specific directory of
<_TMROOT>/inc directory, for example drv_conf.c is located in
<_TMROOT>/inc/mips_psos. You can access other configurational source files using
the VPATH makefile variable without the component scope.

DIR_LOCAL= comps/tmComp1
include $(_TMROOT)/sde/environment.mk

#--
Source environment variables
#--
CXX_SOURCES =
C_SOURCES = src/tmComp1.c
CFG_SOURCES = cfg/tmComp1Cfg.c
S_SOURCES = src/$(PLATFORM_SPECIFIC_DIR)/tmComp1.s
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 85 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
3.15.1.3 REQUIRES section

This section is optional. It is required if your component requires other components. The
part is as follows:

You have to define a list of required components. The component names are separated by
space(s). In case you need an interface (example: tmReal) implemented by a component
(example: tmRealFloat), write this as follows:
<Interface Name> PROVIDED_BY <Component Name>

Putting a component in the REQUIRES list causes the public header files of that component
to be in the include path.

If you implement an interface in your component you have to use the same construction
as above.

Note that the interface subdirectory name in the intfs directory begins with I. This I
cannot be present in the makefile, for example: intfs/ItmReal.

3.15.1.4 Recursive closure of REQUIRES section

An option is available in SDE2 to recursively close the REQUIRES section of a
component or application. This can be done by setting the environment variable
_TMNESTEDINCLUDE to 1 or any value

3.15.1.5 Third-party software and non default include directories

This section is optional. If necessary, put the include paths of the third parties or non
default include paths in DIR_INCLUDE. Be aware, that third-party software will make your
components less reusable. You can also use DIR_INCLUDE to access your private header
files in a subdirectory of the src directory. Example:
DIR_INCLUDE = src/sub

3.15.1.6 Libraries and DLLs

This section is needed if you use functions from another component. Define it using the
variable LIBS6. If you need an external library or DLL, set the complete path in
EXTERNAL_LIBS and EXTERNAL_DLLS.

#--
Required components
#--
REQUIRES = tmComp2 \

tmReal PROVIDED_BY tmRealFloat \
tmComp8

6. In previous releases of SDE2, the variable DLLS was used to define required DLLs. This variable is not used any more since
release 1.1.6.

#--
Required libraries
#--
LIBS = tmComp1 tmComp6
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 86 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
The LIBS contains list of the libraries separated by space(s).

Adding components to the LIBS section means you introduce a dependency between
these two components. This dependency is important during the executable link time and
it means that the required library will be placed after the requiring library in the compilation
line. For more information about this, read Section 3.7, Libraries and the LIBS section on
page 45.

Before SDE2 release 1.1.6, the default REL_SUFFIX had to be added at the end of the
library name; from release 1.1.6 on, this is added automatically by SDE2. To create a
library with a different compilation mode and/or different flavors, refer to Section 3.13.4.2,
Mixing debug/assert/retail/trace diversities and build_exe.pl on page 73.

For the EXTERNAL_LIBS read Section 3.14.9, Third-party software on page 83.

For the calling style of DLLs line read Section 3.6, Dynamic link libraries (DLLs) on page
42.

3.15.1.7 EXPORTS variable

If the EXPORTS variable is set, the target is lib, and you have one of the following
platforms: arm_ce, armgnu_linux, mips_ce, mipsgnu_linux , tm_psos, x86_nt, x86_ce x86gnu_linux or
x86gnu_nullos, the compiler starts to generate a DLL after the generation of the library.
Example for EXPORTS:
EXPORTS = tmComp8Print

3.15.1.8 Setting the diversity

This part is necessary if you have diversities in your component. This part must be appear
before the TARGETS section. This is an example of how you can set your diversity in your
LOCAL_CFLAGS and library name:

#--
Required external libraries. Specify complete paths.
#--
EXTERNAL_LIBS =
EXTERNAL_DLLS =

#--
Find string '_flo_' or '_int_' from the diversity environment
variable _TMDIVERSITY
#--
ifeq ($(findstring _flo_, $(_TMDIVERSITY)),_flo_)
LOCAL_CFLAGS = -DTMCOMP2FLO
LIB_SUFFIX = _flo
endif
ifeq ($(findstring _int_, $(_TMDIVERSITY)),_int_)
LOCAL_CFLAGS = -DTMCOMP2INT
LIB_SUFFIX = _int
endif
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 87 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
The LIB_SUFFIX is added to the library name. A LIB_SUFFIX has to start with an underscore
(_) and has to have underscores between its diversities. Despite this, some diversities
cannot be present. The developer determines the correspondence between the
_TMDIVERSITY variable and the file name settings defined in LIB_SUFFIX. For example, you
can decide that if you have _sp_ (single processor mode), LIB_SUFFIX will be empty.

Note: These settings are additions to what is set in the diversity.mk file (see Section 3.15.4,
Component diversity.mk on page 99). The preferred style is to put certain diversity
specifications in diversity.mk.

3.15.1.9 Local C, C++, LD, and TMTGT Flags

The list of flags below can be set in the component makefile to customize the compiler
settings. In SDE2, TMTGT flags are located after option files.
LOCAL_CFLAGS =

LOCAL_CXXFLAGS =

LOCAL_LDFLAGS =

LOCAL_INCLUDES =

_TMTGTCOPTS =

_TMTGTCXXOPTS =

_TMTGTAOPTS =

_TMTGTINCLUDES =

<LOCAL_CFLAGS><_TMTGTCOPTS> (<LOCAL_CXXFLAGS><LOCAL_CXXFLAGS>) are specific
flags added in this order to the compilation line when you compile for C (C++).
LOCAL_LDFLAGS are added to the compilation of the executable. _TMTGTAOPTS is added to
the assembler compilation line. For _TMTGTINCLUDES and LOCAL_INCLUDES read Section
3.4.5, Include directories on page 34.

Here you can put all your specific settings, as they are described in Table 3-10,
Table 3-11, Table 3-12, Table 3-13, Table 3-14 and Table 3-15.

You can also include your Java settings. Java settings are described in Appendix A. The
only mandatory Java setting is the location of the JDK. For example,
JAVATOP=c:/jdk1.3

3.15.1.10 Auto-documentation

You need this optional part if you want to have better documentation output generated by
Doxygen in HTML and LaTeX format. You can write the following:
DOC_COMPNAME = tmComp1
DOC_SECTIONNUMBER = 01

3.15.1.11 Target(s)

This part is mandatory. You have to specify your goals in all. You have to have a
configuration goal and at least one of the goals java, lib or target. Examples are:
all: configuration lib

all: configuration java lib
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 88 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
If your target is an executable, this part will look like:

You can have other goals as well. As an example if you have a diversity, you must declare
the diversity goal like this:
all: diversity configuration lib

If you have a diversity goal, you must implement it in the file diversity.mk (preferably) or
here. In case you implement the goal in diversity.mk, do not forget to put the following line in
the component makefile:
include diversity.mk

This shows an example of a local implementation:

3.15.1.12 Makejava, makelib or maketarget

This part is mandatory. It consists at least of one of the makejava include, makelib include or
maketarget$(_TMBSL) include. The includes makelib and maketarget$(_TMBSL) are not designed
to be used together. Examples of the usage are:

TARGET = test
all: configuration target

#--
Two kinds of diversities are supported
#--
diversity:
ifeq ($(LIB_SUFFIX),)

@$(ECHO) "_TMDIVERSITY must contain _flo_ or _int_"
@$(ECHO)

endif
The other approach is to use recursive make. Example:
all: configuration FORCE

@$(ECHO) making multi processor version
@$(MAKE) "COMP7_LIB=lib_mp" "C_SOURCES=$(C_SOURCES_mp)" \

"LOCAL_CFLAGS=$(LOCAL_CFLAGS_mp)" lib
@$(ECHO) making single processor version
@$(MAKE) "COMP7_LIB=lib" "C_SOURCES=$(C_SOURCES_sp)" \

"LOCAL_CFLAGS=$(LOCAL_CFLAGS_sp)" lib

#**
Do not change the following include
#**
include $(DIR_SDE)/makejava.mk
and / or
ifneq ($(DIR_CONFIG),_)
include $(DIR_SDE)/$(DIR_CONFIG)/makelib.mk
endif
and / or
ifneq ($(DIR_CONFIG),_)
include $(DIR_SDE)/$(DIR_CONFIG)/maketarget$(_TMBSL).mk
endif
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 89 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
3.15.1.13 Different file specific compiler settings

This section is optional. You can specify different file compile settings per file, for example,
$(DIR_INTERM)/src/tmComp4int1.$(_SDE_O) : TARGET_CFLAGS+=-DTMCOMP4INT1

$(DIR_INTERM)/src/tmComp4int2.$(_SDE_O) : TARGET_CFLAGS+=-DTMCOMP4INT2

3.15.2 The += assignment

The += assignment is introduced for some makefile variables instead of the = assignment.
The main difference is that you can set the initial value of your environment or makefile
variable in your makefile and this value will be taken into account by SDE2. For example,
if you need to add some extra object files to the linker, you can do this by setting
_SDE_OBJECTS to the object file’s location and name. If you do this for a variable initialized
by =, the SDE2 will override your values and no action will be taken.

The following variables are initially assigned with +=:

• _SDE_DEPENDENCIES – Dependency files with.d extension.

• _SDE_DLL_OPTIONS – Here you can add additional DLL compile options. The DLL
options are placed in the beginning of the line.

• _SDE_LIB_PATHS – Here you can add additional library paths.

• _SDE_OBJECTS – Here you can add additional object files.

• _SDE_OPTIONFILES – See the description in Table 3-12 Variables for any makefile.

• PSOSOBJ – pSOS object files needed for mips_psos executables.

• VPATH – Here you can add extra paths for your sources.

• _SDE_DEP_MAKEFILES – List of SDE2 used makefiles and component directories.

• _SDE_WARNINGS – List of SDE2 warnings, if any.

• _SDE_REQUIRED_PATH_DLLS – List of directories for SDE2 (DLL) binary release.

• _SDE_REQUIRED_PATH_LIBS – List of directories for SDE2 (library) binary release.

• _SDE_IDLVPATH – List of paths for IDL files.

• _SDE_IDLFLAGS – Flags for IDL compilation.

• _SDE_CE_DLLS – Required DLLs for WinCE recompilation.

• _SDE_PROC_DEFINES – Specific options for CPU type for the respective configurations.

3.15.3 Tables of all environmental and makefile variables

These tables do not include the Java environmental and makefile variables. The
Java-related variables can be found in Appendix A.

Note: Do not change these values in your makefiles (exceptions are _TMTGTAOPTS,
_TMTGTCOPTS, _TMTGTCXXOPTS, and _TMTGTINCLUDES).

Note: Changing the other values may lead to unpredictable behavior, especially if you use
build scripts.

All variables in the Table 3-10 and Table 3-11 are environment variables.
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 90 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
This table lists the external target configuration variables and their descriptions.

Table 3-10: Variables for external target configuration
Variable Purpose
_ECHOMAKELINES Print echo messages if it is set

_SDE_VERSION Version of SDE2

_TMBSL SDE2 Board support library. See Table 3-5.

_TMCLOCKFREQ TriMedia clock frequency; if undefined, we use 100MHz. TriMedia
pSOS image build specific.

_TMDIVERSITY SDE2 diversity. See Table 3-5.

_TMECHO Print echo messages if it is set

_TMENDADDR End address of memory image. TriMedia pSOS image build specific.

_TMLINKTYPE SDE2 link type, currently used only for tm_psos configuration. See
Table 3-5.

_TMMMIOBASE Base address of MMIO; if undefined, we use 0x1be00000. TriMedia
pSOS image build specific.

_TMNODEPENDENCIES Skip dependency generation, if set. See Table 3-5.

_TMNESTEDINCLUDE Recursively close REQUIRES section, if set. See Table 3-5.

_TMPROJECT This environment variable in used under cadenv environment in order
specify the location of user specific settings (eg. $(UNAME).mk,
prjlist.txt, buildlist.txt, configurations.txt etc) and also
maketarget_$(TMBSL).mk files

_TMROOT SDE2 template root. See Table 3-5.

_TMSITE SDE2 site name. See Table 3-5.

_TMSTARTADDR Start address of memory image. TriMedia pSOS image build specific.

_TMTOOLCHAIN Tool chain for arm configuration. Possible values: undefined (default)
or ads (arm specific).

_TMTGTAOPTS Added at the end of the compilation line for assembler sources

_TMTGTBUILDROOT SDE2 release root. See Table 3-5.

_TMTGTCOPTS Added at the end of the compilation line for C sources

_TMTGTCOPYLIB Option to generate binary release for libraries/DLLs. See Table 3-5.

_TMTGTCOPYOBJ List of object files to be copied in the binary release. See Table 3-5.

_TMTGTCPP Option to generate preprocessing information (for code debug).

_TMTGTCPUCLASS CPU class. See Table 3-1. Should not contain capitals.

_TMTGTCPUTYPE CPU type. See Table 3-1

_TMTGTCXXOPTS Added at the end of the compilation line for C++ sources

_TMTGTENDIAN Big- or little-endian. See Table 3-5.

_TMTGTINCLUDES Added at the end of include directories path with –I prefix for each
include directory.

_TMTGTOS OS type. See Table 3-1

_TMTGTOSCLASS OS class. See Table 3-1. Should not contain capitals.

_TMTGTREL Release mode. See Table 3-5.

_TMDOC Comma separated values for generating auto documentation. (pdf,
html, tex and rtf)
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 91 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
Table 3-11 lists the external environment configuration variables and their descriptions.

_TMTGTWARNINGS Warning mode. Values 0, 1, 2, 3 (default). Value 0 means no
warnings (if possible), value 3 (almost) all possible warnings. Values
1 and 2 are intermediate. See Section 3.4.7, Warning levels on
page 36.

_TM_C_ASM_CORREL Used to switched on armads_nullos–specific feature that allows the
generation of some extra support files. These files are used when the
program is run on an IC design simulator as the target. Values:
defined or undefined.

PATH Search path. See Table 3-5.

TMP Temporary directory.

Note: This environment variable has to be defined for Windows
2000/XP.

UNAME Name of the makefile with settings of the executables. See Table 3-5.

Table 3-10: Variables for external target configuration
Variable Purpose

Table 3-11: Variables for external environment configuration
Variable External environment
_FLATRELEASEDIR CE-specific. Location of the WinCE300/release directory.

_WINCE_HPC_LIB_MIPS Location of the WCE200/MSHPC~1/lib/mips directory.

_WINCEROOT Location of the WINCE (WinCE300) directory.

DFP MIPS-pSOS–specific setting for executables. Possible values: S or H.

DIABLIB MIPS-pSOS–specific. Location of the DIAB libraries.

GCC_BASE Path to GCC installation (for arm/mips/x86gnu_linux configurations)

GCC_PREFIX The Cross compiler prefix (for arm/mips/x86gnu_linux configurations)

GCC_VERSION GCC version being used (for arm/mips/x86gnu_linux configurations)

GHS_HOME MIPS-INTEGRITY specific. Location of integrity OS installation.

ISIMIP MIPS-pSOS–specific. Location of the isimip installation.

LM_LICENSE_FILE MIPS-pSOS–specific. License file.

PSS_BSP MIPS-pSOS–specific. Location of the bsps/p4032 directory.

PSS_ROOT MIPS-pSOS–specific. Location of the pssmip.250 directory.

TCS TriMedia specific. Location of the TriMedia installation.

TMPDIR TriMedia-specific. The compiler creates temporary files in the current
directory. If you do not have write privileges in this directory, the
compiler will generate an error.

VCC NT-specific. Location of the Visual Studio Installation.

WIND_BASE Location of the Tornado directory.

WIND_HOST_TYPE Tornado-specific. Host type.
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 92 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
All variables in the Table 3-12, Table 3-13, and Table 3-14 are makefile variables.

Table 3-12: Variables for any makefile
Variable Function
_SDE_AOPTFILE_DEPENDS If it is set, the file $(DIR_INTERM)/a.opt depends on its value. By

default it depends on the makefile.

_SDE_BTM If set to 1, different behavior for building executables is present. For
WinCE platforms, the standard libraries coredll.lib and corelibc.lib are
not included by default. For mips_psos, a *.dld file is not built and you
must specify the target in your maketarget$(_TMBSL).mk specific
makefile.

_SDE_COPTFILE_DEPENDS If it is set, the file $(DIR_INTERM)/c.opt depends on its value. By
default it depends on the makefile.

_SDE_CXXOPTFILE_DEPENDS If it is set, the file $(DIR_INTERM)/cxx.opt depends on its value. By
default it depends on the makefile.

_SDE_EXTRA_CFLAGS Project-wide compiler-specific -D options for C files.

_SDE_EXTRA_CXXFLAGS Project-wide compiler-specific -D options for C++ files.

_SDE_LOPTFILE_DEPENDS If it is set, the file $(DIR_INTERM)/l.opt depends on it,
otherwise it depends on the makefile.

_SDE_OPTIONFILES List of the option files ($(DIR_INTERM)/<c|cxx|a|l>.opt) to be generated.
The make utility generates only the required files; if an extra file is
needed, it must be put in this makefile variable.

C_SOURCES List of the names of all C source files if any. They must be located in
the src subdirectory so the src/ prefix must be present in the
names.

CFG_SOURCES List of the names of all configuration source files if any. They must be
located in cfg subdirectory.

CXX_SOURCES List of the names of all C++ source files if any. They must be located
in src subdirectory.

DIR_CONFIG Name of the configuration directory in /sde. The specific
configuration files (common.mk, makelib.mk, maketarget.mk) are located
there. Equals to
$(_TMTGTCPUCLASS)$(_TMTOOLCHAIN)_$(_TMTGTOSCLASS)

DIR_INCLUDE List of the include directories without a –I prefix. This list is put in the
beginning of the whole include list.

DIR_LOCAL Local directory. Usually set to comps/tm<Component Name>

EXTERNAL_DLLS List of used external DLLs

EXTERNAL_LIBS List of used external libraries

LIB_SUFFIX Additional suffix to the library file for diversity purposes.

LIBS List of used libraries and DLLs within SDE2; If you specify a
component in this list, it means you are using a function from its
public interface. The library of the used component is always listed?
after your component’s library in the linking line of the executable.

LOCAL_CFLAGS Local flags added to the compilation line for C files.

LOCAL_CXXFLAGS Local flags added to the compilation line for C++ files.

LOCAL_INCLUDES Include directories set before the platform-specific directories. They
can overwrite platform specific items.
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 93 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
Table 3-13 lists the library makefile variables and their descriptions.

Table 3-14 lists the executable makefile variables and their descriptions.

Table 3-15 contains a list of makefile variables set in the SDE2. You can use them in your
makefiles. You can override them, but we do not support problems arising from overrides.

REL_SUFFIX Derived from _TMTGTREL. It can be _g, _a, or empty. Changing this
variable will force a build in different compilation mode.

REL_COMPS_SUFFIX Derived from _TMTGTREL. It can be _g, _a, or empty.
Do not change this variable.

REQUIRES [1] List of the names of the required components if any.

S_SOURCES List of the names of all assembler source files (if any) located in or
below the directory src.

TARGET_AFLAGS Added in the compilation line for assembler sources

TARGET_CFLAGS Added in the compilation line for C sources

TARGET_CXXFLAGS Added in the compilation line for C++ sources
[1] It can be set to: REQUIRES = $(REQUIRED_INTERFACES) $(PROVIDED_INTERFACES)

Table 3-12: Variables for any makefile <Helv9R>(Cont’d.)
Variable Function

Table 3-13: Variables for library makefiles
Variable Description
_SDE_DLL_OPTIONS Option for the DLLs generation. It is defined with +=, so you can add

some options before the default ones.

DOC_COMPNAME Used by Doxygen for automatic generation of the documentation.

DOC_SECTIONNUMBER Used by Doxygen for automatic generation of the documentation.

EXPORTS See section

LOCAL_DLLFLAGS This flag is put in the end of _SDE_DLL_OPTIONS.

Table 3-14: Variables for executable makefiles
Variable Description
_SDE_SYSLIBS mips_psos–specific default local target libraries. You can overwrite

them.

LOCAL_LDFLAGS Added at the end of the linker line.

LOCAL_SYSLIBS mips_psos–specific custom target libraries. They are put before the
default libraries.

PSS_CONFIG mips_psos–specific. If it is defined PSS_CONFIG is not set to the default
value.

TARGET Target name

Table 3-15: Makefile variables used in SDE2
Variable Description
_SDE_ALL_OBJECTS All present objects in the release tree, used for the executable build.

This variable is set and used only for x86_vxworks to resolve a specific
issue.

_SDE_AOPTS User assembler options.

_SDE_AOPTS_FILEX, X=1..4 SDE2 assembler options.
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 94 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
_SDE_ARSUFFIX Equal to REL_SUFFIX. Present in the target file name.

_SDE_ASM_LIST Used to generate ASM disassembly of object files.
armads_nullos–specific.

_SDE_BIN_REL_OBJ List of object files, retrieved from a binary release.

_SDE_C_LIST Used to generate C language disassembly of object files.
armads_nullos–specific.

_SDE_CE_DLLS Required DLLs for WinCE compilation

_SDE_COMMCTRL CE–specific. Location of COMMCTRL library

_SDE_COPTS User C options.

_SDE_COPTS_FILEX, X=1..4 SDE2 C options.

_SDE_COREDLL CE–specific. Location of COREDLL library

_SDE_CPP_FILES If _TMTGTCPP is set, it contains the list of files to store the
preprocessed information.

_SDE_CPUTYPES_8051 Contains list of CPU types supported for 8051 CPU class

_SDE_CPUTYPES_arm Contains list of CPU types supported for arm CPU class

_SDE_CPUTYPES_hp Contains list of CPU types supported for hp CPU class

_SDE_CPUTYPES_mips Contains list of CPU types supported for mips CPU class

_SDE_CPUTYPES_real Contains list of CPU types supported for real CPU class

_SDE_CPUTYPES_tm Contains list of CPU types supported for tm CPU class

_SDE_CPUTYPES_x86 Contains list of CPU types supported for x86 CPU class

_SDE_CXXOPTS User C++ options.

_SDE_CXXOPTS_FILEX, X=1..4 SDE2 C++ options.

_SDE_DEBUG_OPTIONS Contains extra debug options.

_SDE_DEP_MAKEFILES List of SDE2 used makefiles and component directories. Used to
force the update, if one of those files is changed.

_SDE_DEPENDENCIES List of all dependency files if _TMNODEPENDENCIES is not set.

_SDE_DIR_BIN Set to <_SDE_DIR_BUILD>/<_SDE_DIR_EXE_EXTPATH>

_SDE_DIR_BIN_EXTPATH Set to bin/<DIR_CONFIG>_<_TMLINKTYPE>_<_TMTGTENDIAN>_
<_TMTGTCPUTYPE><LIB_SUFFIX><_SDE_ARSUFFIX>_
<_SDE_TCSHOST><_TMBSL>.
_<_SDE_TCSHOST> present only in case CPU type is tm.

_SDE_DIR_CONFIGURATION Set to <_TMTGTBUILDROOT>/<DIR_LOCAL>/cfg

_SDE_DIR_LIB Set to <_SDE_DIR_BUILD_ROOT>/<_SDE_DIR_LIB_EXT>

_SDE_DIR_LIB_EXT Set to lib/<DIR_CONFIG>_<_TMTGTENDIAN>_<_TMTGTCPUTYPE>

_SDE_DIR_LIB_LOCAL Set to <_SDE_DIR_BUILD>/<_SDE_DIR_LIB_EXTPATH>

_SDE_DIR_REL_TO_LOCAL_ROOT Relative location of the local root.

_SDE_DIR_REL_TO_ROOT Undocumented.

_SDE_DIR_SED_SCRIPT By default set to ‘s!\([^/]*\)\([/]*\)!..\2!g’.
Can be set to another value in case sed misbehaves on your
installation [1].

_SDE_DIRLIB_SUFFIX Dir lib statement for the path of the libraries.

Table 3-15: Makefile variables used in SDE2 <Helv9R>(Cont’d.)
Variable Description
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 95 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
_SDE_DIVERSITY The name of the subdirectory below lib where DLLs are placed.
Is set to a concatenation of the values of _TMDIVERSITY (minus
trailing underscore) and REL_SUFFIX.
In case both variables are undefined, is set to the current directory (.).

_SDE_DLL_PREFIX Equals lib for tm_psos, otherwise undefined.

_SDE_DLLTARGETNAME SDE2 DLL target name.

_SDE_ERROR If it is not empty, prints an error message and stops.

_SDE_EXT_LIBS List of the external libraries with their full path.

_SDE_FLAVOR_OPTIONS Contains settings such as -DTMFL_REL=TMFL_REL_RETAIL

_SDE_GCC_AOPTIONS Filtered –D, –U and –I assembler options.

_SDE_GCC_COPTIONS Filtered –D, –U and –I C options.

_SDE_GCC_CXXOPTIONS Filtered –D, –U and –I C++ options.

_SDE_IDLFLAGS Flags for IDL compilation.

_SDE_IDLVPATH List of directories for IDL files.

_SDE_IMPORT_DLLS Contains list of all DLLs without their diversities, recursively searched
in the required libraries list. If a DLL is found, it is put in this variable
and there is no recursive search below this DLL.

_SDE_IMPORT_LIBS Contains the list of all recursively required libraries without their
diversities.

_SDE_IMPORT_REQUIRES Contains the list of all recursively required interfaces without their
diversities.

_SDE_INCLUDES List of the include paths with –I prefix.

_SDE_INTERFACES [2] Has to be set if it is needed.

_SDE_INTFS_IDL_DIRINC Header files release directory (generated by IDL)

_SDE_INTFS_IDL_SOURCES IDL source files

_SDE_INTFS_IDL_TARGETS Header files generated from IDL source files and IDL tool.

_SDE_LBOPTS User linker options (libraries).

_SDE_LDOPTS User linker options (executable).

_SDE_LIB_CONFIGURATION Set to $(DIR_CONFIG)_$(_TMGTENDIAN)_$(_TMTGTCPUTYPE).

_SDE_LIB_PATHS SDE2 library generic path.

_SDE_LIBC / _sde_libc CE–specific. Location of LIBC library

_SDE_LIBRARIES List of the libraries with their suffixes and prefixes.

_SDE_LIBS_DIVERSITY All recursively required libraries with their suffixes; the DLLs are not
included.

_SDE_LIBS_NOSFX Set to all required libraries without the part starting with an
underscore.

_SDE_LINKSTYLE Microsoft, nullos, linux or TriMedia compilation/link style.

_SDE_LINKTYPE Set the linker options based on the linking type

_SDE_LIST_DIR Intermediate location were some files are processed.
armads_nullos–specific.

Table 3-15: Makefile variables used in SDE2 <Helv9R>(Cont’d.)
Variable Description
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 96 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
_SDE_MI_FLAGS Memory image build compilation flags. TriMedia memory image build
specific.

_SDE_NCSCOPTS NC-SC compiler options

_SDE_NCSC_FLAGS NC-SC compiler flags

_SDE_NCSC_GCC NC-SC gcc path

_SDE_NCSC_GXX NC-SC g++ path

_SDE_O Object extension name, usually o or obj.

_SDE_OSTYPES_ce Contains list of OS types supported for ce OS class

_SDE_OSTYPES_cexec Contains list of OS types supported for cexec OS class

_SDE_OSTYPES_ecos Contains list of OS types supported for ecos OS class

_SDE_OSTYPES_integrity Contains list of OS types supported for integrity OS class

_SDE_OSTYPES_linux Contains list of OS types supported for linux OS class

_SDE_OSTYPES_mtos Contains list of OS types supported for mtos OS class

_SDE_OSTYPES_nt Contains list of OS types supported for nt OS class

_SDE_OSTYPES_nucleus Contains list of OS types supported for nucleus OS class

_SDE_OSTYPES_nullos Contains list of OS types supported for nullos OS class

_SDE_OSTYPES_oscan Contains list of OS types supported for oscan OS class

_SDE_OSTYPES_psos Contains list of OS types supported for psos OS class

_SDE_OSTYPES_ucos Contains list of OS types supported for ucos OS class

_SDE_OSTYPES_vxworks Contains list of OS types supported for vxworks OS class

_SDE_PROC_DEFINES Specific options for CPU type for respective configurations

_SDE_PROVIDED_INTERFACES SDE–provided interfaces.

_SDE_RECURSE_STATIC_LIBS All recursively required components (libraries + dlls).

_SDE_REQUIRED_INTERFACES List of required interfaces.

_SDE_REQUIRED_PATH_DLLS Set to a list of existing directories containing the binary release of
DLLs.

_SDE_REQUIRED_PATH_LIBS Set to a list of existing directories containing the binary release of
libraries.

_SDE_RGD_H_FILE Name of the RGD header file.

_SDE_SUPPORTED_CPUTYPES Contatins list of all SDE2 supported CPU types

_SDE_SUPPORTED_OSTYPES Contatins list of all SDE2 supported OS types

_SDE_SUPPORTED_CPU_CLASSES Contatins list of all SDE2 supported CPU classes

_SDE_SUPPORTED_OS_CLASSES Contatins list of all SDE2 supported OS classes

_SDE_TARGET_SUFFIX Extension of the executable/memory image build. TriMedia memory
image build specific.

_SDE_TCSCPUTYPE TriMedia-specific. Type of the CPU.

_SDE_TCSHOST [3] TriMedia-specific. Host name. Equals to _TMTCSHOST if
platform-specific common.mk, makelib.mk or maketarget.mk is included.

_SDE_THISDLL Full DLL name.

_SDE_THISLIB Full library name.

Table 3-15: Makefile variables used in SDE2 <Helv9R>(Cont’d.)
Variable Description
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 97 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
_SDE_TMTGTBUILDROOT The location of libraries and temporary files.
It is set in environment.mk to the value of _TMTGTBUILDROOT (if
defined) or to the value of _TMROOT (otherwise).

_SDE_VXWORKS_SUBDIRS x86_vxworks–specific. List of component subdirectories, where the
SDE2 has to look for object files to resolve C++ issue.

_SDE_WARNING_LEVEL Compilation warning options.

_SDE_WARNINGS SDE2 warnings.

AS Assembler compiler.

CC C compiler.

CXX C++ compiler.

DIR_INTERM_EXE [4] Set to
<_SDE_DIR_BUILD>/tmp/<DIR_CONFIG>_<_TMTGTENDIAN>_<_TMTG
TCPUTYPE>
<LIB_SUFFIX><_SDE_ARSUFFIX>_<_SDE_TCSHOST>
<_TMBSL>. The “_<_SDE_TCSHOST>” part is present if the processor
is “tm”.

DIR_INTERM_LIB Set to
<_SDE_DIR_BUILD>/tmp/<DIR_CONFIG>_<_TMTGTENDIAN>_<_TMTG
TCPUTYPE><LIB_SUFFIX><_SDE_ARSUFFIX>

LB Linker libraries.

LD Linker executables.

PSOS_OBJS Tm-specific. List of PSOS objects.

PSOSOBJ mips_psos–specific. List of pSOS objects. The list is defined with += so
you can add your MIPS objects too.

[1] A version of HP-UX 10.20 has been encountered with aberrant sed behavior.

[2] Example:
_SDE_INTERFACES= \
$(_SDE_REQUIRED_INTERFACES)
Note: The obsolete variable _SDE_INTERFACES has been replaced with _SDE_REQUIRED_INTERFACES.

[3] Note: _SDE_TCSHOST is initialized in environment.mk for tm platform to _TMTCSHOST. Later, for libraries, it is
reinitialized in tm_psos/common.mk to nohost. For executables, it is the same. This does not cause any problems
because _SDE_TCSHOST is used to set the paths only for executables.

[4] Be cautious using the recursive variables DIR_INTERM_EXE and DIR_INTERM_LIB. These variables refer to
LIB_SUFFIX that may not be set and (for tm executables) _SDE_TCSHOST. So if you use them with an ifeq
construction, set LIB_SUFFIX (if you have a different suffix) correctly before use.

Table 3-16:
Variable Description
_<CompName>_DIR Location of the component, including its name

_<CompName>_DIVERSITY Component required diversities determine in run-time. This variable
has to be located in diversity.mk

_<CompName>_LOADED Trimedia specific. Component DLL loaded mode, default is
“immediate”.

_<CompName>_SUFFIX Component required compilation mode.
This variable has to be located in diversity.mk, if there is no
default compilation mode.

Table 3-15: Makefile variables used in SDE2 <Helv9R>(Cont’d.)
Variable Description
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 98 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
3.15.4 Component diversity.mk

Each component can have a file diversity.mk. It is optional, but very important. The basic
idea is to take some diversity definitions out of the makefile in order to make them
accessible to other makefiles. The file is located in the same directory as the component
makefile and may be considered part of it (meaning that if a component is delivered with the
makefile, the diversity.mk file must also be delivered).

Note: The files makefile and diversity.mk are both part of a binary release.

The following can be done in the diversity.mk file in a component:

• Specify whether the component has to be required in a fixed compilation mode. You
can do this by setting _<CompName>_SUFFIX to:

n undefined or empty – default compilation mode

n _g – debug compilation mode

n _a – assert compilation mode

n _t - trace compilation mode

n _r – retail compilation mode

The _<CompName>_SUFFIX variable has to be set with :=.

• Extract the component diversity suffix from _TMDIVERSITY. This is done by setting
_<CompName>_DIVERSITY. The _<CompName>_DIVERSITY variable has to be set with :=.

• Set _<CompName>_LOADED mode. This is a TriMedia-specific DLL loaded mode. It can
be immediate or deferred.

• Set target diversity. Please note that this target should be set with double colon, i.e., ::,
because all components with diversity have this target and all targets should be
checked.

Do not set any variables except these four in the file diversity.mk. This file is used directly by
SDE2 makefiles and modifying other variables may cause unpredictable behavior. If you
need intermediate variables, use unique names. .

The code below is an example of a diversity.mk file:

_Comp8_canon := $(findstring _mp_,$(_TMDIVERSITY))
_Comp8_canon := $(_Comp8_canon)$(findstring _sp_,$(_TMDIVERSITY))
_Comp8_canon := $(_Comp8_canon)$(findstring _td_,$(_TMDIVERSITY))
_tmComp8_DIVERSITY := $(patsubst %_,%,$(subst __,_,$(_tmComp8_canon)))
_tmComp8_SUFFIX := _r
diversity::
ifeq (,$(filter _mp_ _sp_, $(findstring _mp_, $(_TMDIVERSITY))$(findstring _sp_, $(_TMDIVERSITY))))

@$(ECHO) "_TMDIVERSITY ($(_TMDIVERSITY)) must contain one of _mp_ or _sp_"
@exit 1

endif
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 99 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
3.15.5 Reliable development with SDE2

As a rule, you set the definition of your environment variables in a batch file. You run this
batch file and then you use/develop your components. However, in the process of
development, you may want to change the value of one or more environment variable.
The danger is, that this may not lead to the update of your dependencies, *.l, object and
library files, i.e., your compilation process will be not correct.

Because checking whether or not the user has changed one of these environment
variables may cost significant compilation time, this feature is not present in SDE2.

There are a few groups of environment variables and we will analyze each of these
groups with respect to a reliable build process.

• Variables responsible for the configuration: _TMTGTCPUCLASS, _TMTGTOSCLASS,
_TMTOOLCHAIN, _TMTGTCPUTYPE, _TMTGTOS, _TMTGTENDIAN, UNAME, _TMSITE, _TMBSL,
_TMLINKTYPE, _TMPROJECT. It is not dangerous to change any of these variables, if
you set a new proper value. You will just work with another configuration.

• Diversity variables: _TMTGTREL, _TMDIVERSITY. If you change one of these
variables, you will get a warning/error message if SDE2 cannot handle some case
properly. The usual warning message is that a *.l file is missing, because its location
depends on those variables. It is not dangerous to change this variable if you take
into account the warning messages.

• SDE2 process–specific variables: _TMTGTCOPYLIB, _TMTGTCOPYOBJ, _TMECHO,
_TMTGTWARNINGS, _TMTGTBUILDROOT, _TMNODEPENDENCIES, _TMTGTCOPYOBJ,
_TMTGTCPP, _ECHOMAKELINES, _SDE_VERSION, TMP. It is not dangerous to change
these variables.

• SDE2 option variables: _TMTGTCOPTS, _TMTGTCXXOPTS, _TMTGTAOPTS,
_TMTGTINCLUDES, LOCAL_INCLUDES, LOCAL_CFLAGS, LOCAL_LDFLAGS, ... It is
dangerous to change these variables and if you do this, first clean your component
directory.

• SDE2 root location in _TMROOT environment variable. It is unlikely and dangerous to
change this variable and to work with multiple SDE2 copies.

• SDE2 tm_psos-specific memory build image environment variables: _TMMMIOBASE,
_TMCLOCKFREQ, _TMSTARTADDR, _TMENDADDR. If you change one of those variables,
it will not rebuild your memory image unless you first clean your image directory.
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 100 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
3.15.6 Tables of all examples included in the product

The SDE provides 21 example components and corresponding test applications. Each
example shows some features of the SDE2. Table 3-17 describes per example its
location, the features demonstrated, the corresponding test executables and the
configuration classes the example has been tested for. If the Tested for column contains
All, this means that the example is tested for all supported configurations.

Table 3-17: SDE2 examples
Example Description Tested for
comps/tmComp1 Basic library

Example of source files with tags
for autodocumentation with
Doxygen and graphviz

All

comps/tmComp1/tst/Tst1 Basic test executable, also
requires tmComp2. Test case for
the build.pl.

All

comps/tmComp1/tst/Tst2 Basic test executable for mips_psos mips_psos (PC Host)

comps/tmComp2 Components with user-defined
diversity. Requires tmComp1. Test
case for the build.pl.

All

comps/tmComp2/tst/Tst1 Executable using library
tmComp2 for a certain diversity

All

comps/tmComp3 Component using an abstract
interface (PROVIDED_BY
mechanism)

All

comps/tmComp3/tst/Tst1 Executable testing tmComp3 All

comps/tmRealFloat Component implementing an
abstract interface (PROVIDED_BY
mechanism)

All

comps/tmComp4 Component with file-specific
compile options

All

comps/tmComp4/tst/Tst1 Test application of tmComp4 All

comps/tmComp5 Component for SDE_in_SDE All

comps/tmComp5/tst/Tst1 Executable for SDE_in_SDE All

comps/tmComp6 Component with run-time diversity All

comps/tmComp6/tst/Tst1 Test application that recompiled
the run-time diversity of tmComp6

All

comps/tmComp6/tst/Tst2 Test application for object binary
release

All

comps/tmComp7 Recursive make to save
component diversity

mips_psos (PC Host)
tm_psos (PC Host)
x86_nt (PC Host)
mips_ce (PC Host)
x86_ce (PC Host)
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 101 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
comps/tmComp7/tst/Tst1 Test application for tmComp7 mips_psos (PC Host)
tm_psos (PC Host)
x86_nt (PC Host)
mips_ce (PC Host)
x86_ce (PC Host)

comps/tmComp8 DLL component, always required
in assert mode

tm_psos (PC Host)
x86_nt (PC Host)
x86_ce (PC Host)
mips_ce (PC Host)

comps/tmComp8/tst/Tst1 Test application which uses
tmComp8 DLLs. Test example for
warnings.

tm_psos (PC Host)
x86_nt (PC Host)
x86_ce (PC Host)
mips_ce (PC Host)

comps/tmComp9 C++ test component; export
classes in a DLL

All

comps/tmComp9/tst/Tst1 C++ test executable x86_nt (PC Host)

intfs/ItmReal Abstract interface of Real type.
Used by tmComp3

tm_psos (PC Host)
x86_nt (PC Host)

inc Header files tmCompId.h,
tmAvFormats.h and tmtypes.h;
mips_psos directory

tm_psos (PC Host)
mips_psos (PC Host)

comps/tmComp10 DLL-DLL test component,
LOADED mechanism

Like tmComp8

comps/tmComp10/tst/Tst1 DLL-DLL test executable;
EXTERNAL_LIBS test case

Like tmComp8/tst/Tst1

comps/tmComp11 MS Visual Studio integration
example

x86_nt (PC Host)

comps/tmComp12 Java integration example x86_nt (PC Host)

comps/tmComp13 Java JNI and NMI example. x86_nt (PC Host)

comps/tmComp14 Complex DLL, see description
below this table

All

comps/tmComp14/tst/Tst1 Executable for tmComp14, see
description below this table

All

comps/tmComp15 Component required always in
retail mode

All

comps/tmComp15/tst/Tst1 Executable for tmComp15 All

comps/tmComp16 Component implements
ItmDummy. Generate DLL.
Requires tmComp8 and tmComp1.

All

comps/tmComp16/tst/Tst1 Override tmComp1 rel.mode and
tmComp8 diversity.

All

comps/tmComp17 Component implements
ItmDummy. Generate DLL.
Requires tmComp8 and tmComp1.

All

Table 3-17: SDE2 examples <Helv9R>(Cont’d.)
Example Description Tested for
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 102 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
There are the following complex dependencies for tmComp14/tst/Tst1

The building of comps/tmComp14/tst/Tst1 can be executed with one command:
perl build_exe.pl comps/tmComp14/tst/Tst1

In this example the default compilation mode is used if explicitly specified (tmComp8,
tmComp15). Compilation is done for a DLL if possible (x86, ce), for a static library otherwise.

3.16 User Configurable New CPU/OS Type

SDE2 provides to its users, an option to extend the support for new CPUs/OS types them-
selves, as and when the new CPU/OS types are available with out waiting for new SDE2
official release supporting the new CPU/OS types.

Inorder to support a new CPU/OS type the user needs to create a file named
new_cpu_os_type.mk in the directory $_TMPROJECT/$(DIR_CONFIG)/. The contents should be as
follows:

_SDE_CPUTYPES_$(_TMTGTCPUCLASS) = <newcpu1> <newcpu2> <newcpu3>
ifeq ($(_TMTGTCPUTYPE),<newcpu1>)
_SDE_PROC_DEFINES=<newcpu1 options>
endif
ifeq ($(_TMTGTCPUTYPE),<newcpu2>)
_SDE_PROC_DEFINES=<newcpu2 options>
endif
ifeq ($(_TMTGTCPUTYPE),<newcpu3>)
_SDE_PROC_DEFINES=<newcpu3 options>
endif
_SDE_CPUTYPES_$(_TMTGTOSCLASS) = <newos1> <newos2> <newos3>
ifeq ($(_TMTGTOSTYPE),<newos1>)
_SDE_PROC_DEFINES=<newos1 options>
endif
ifeq ($(_TMTGTOSTYPE),<newos2>)
_SDE_PROC_DEFINES=<newos2 options>
endif
ifeq ($(_TMTGTOSTYPE),<newos3>)
_SDE_PROC_DEFINES=<newos3 options>
endif

For Example:

comps/tmComp17/tst/Tst1 Replace in a link time tmComp17
with tmComp16.

All

comps/phSimpleComp1 Test component for SystemC x86ncsc_nullos

comps/phSimpleComp2 Test component for SystemC x86ncsc_nullos

comps/phSimpleComp2/tst/tst1 Test Application for SystemC x86ncsc_nullos

Table 3-17: SDE2 examples <Helv9R>(Cont’d.)
Example Description Tested for

tmComp14/tst/Tst1 requires tmComp14 (DLL)
tmComp14 (DLL) requires tmComp10 (DLL), tmComp15 (always retail), tmComp3
tmComp10 (DLL) requires tmComp8 (DLL, assert), tmComp2 (diversity: _flo), tmRealFloat
tmComp15 (retail) requires tmComp1, tmComp2 (diversity: _flo)
tmComp3 requires tmRealFloat
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 103 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Reference Manual
D:\>set _TMPROJECT
_TMPROJECT=d:/project
D:\>dir d:\project\x86_nt\new_cpu_os_type.mk
Volume in drive D is ABCD
Volume Serial Number is ABCD-VXYZ

Directory of d:\project\x86_nt

08/09/2005 12:30 PM 51 new_cpu_os_type.mk

Contents:
D:\project\x86_nt>cat new_cpu_os_type.mk
_SDE_OSTYPES_nt += nt5
_SDE_CPUTYPES_x86 += i686

NOTE: This implementation doesnot include CPU/OS masking bits. In order to include the
masking bits support user needs to send his latest new_cpu_os_type.mk to SDE2 team.

3.17 New third party toolset integration

SDE2 provides to its users, an option to extend the support to easliy integrate the new
tools into SDE2 environment.

Users need to edit and update a file called project_include.mk located in the directory
mentioned in _TMPROJECT environment variable (if set) or _TMROOT/projecty/ directory. This
file would either have the modifications/rules and commands for new tools or this file
would include another makefile that has the rules and commands for the new toolset.

For Example:
D:\>set _TMPROJECT
_TMPROJECT=d:/project
D:\>dir d:\project
Volume in drive D is ABCD
Volume Serial Number is ABCD-VXYZ

Directory of d:\project

02/06/2006 12:30 PM 51 project_include.mk
02/06/2006 12:45 PM 141 docjet.mk

Contents:
D:\project>cat project_include.mk
-include docjet.mk

D:\project>cat docjet.mk
 docjet:

@echo “Generating docjet documentation......”
@d:/progra~1/talltree/docjet/Program/Generator -v d:/config.djt
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 104 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : System C Support
What is covered in this chapter?

This chapter provides information on the System C support provided by SDE2. This
feature of SDE2 is mainly used to build software simulated hardware IPs

4.1 Introduction to System C

SystemC provides hardware-oriented constructs within the context of C++ as a class
library implemented in standard C++. Its use spans design and verification from concept
to implementation in hardware and software.

SystemC provides an interoperable modeling platform which enables the development
and exchange of very fast system-level C++ models. It also provides a stable platform for
development of system-level tools.

The Open SystemC Initiative (OSCI) is an independent not-for-profit organization
composed of a broad range of companies, universities and individuals dedicated to
supporting and advancing SystemC as an open source standard for system-level design.

The NC-SC™ Simulator is the industry's premier environment for transaction-level model
development and verification. With performance 100x faster than equivalent RTL,
transaction-level modeling is ideal for low-level embedded software development and
architectural analysis. The NC-SC simulator supports the SystemC® Verification Library,
making it ideal for creating transaction-level testbenches.

4.2 Supported Configurations

SDE2 supports the following system C configurations

• x86ncsc_nullos - NcSc System

• x86osci_nullos - OSCI System

• hpncsc_nullos - NcSc System

4.2.1 Cadence-NcSc System C support - HW Modeling (x86ncsc_nullos)

Inorder to support building of reusable System C components using Cadence NC-SC, for
Hardware Modeling team a new configuration class x86ncsc_nullos has been included in
SDE2. Linux being the host platform. The CPUCLASS and CPUTYPE for this
configuration being x86 and i486 respectively, OSCLASS and OSTYPE being nullos. The
toolchain is “ncsc”. The compiler used for dependency generation and compilation is ncsc.

Chapter 4
System C support in SDE2
User Manual Version 3.8 Sep 29, 2006
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 105 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : System C Support
4.2.2 OSCI System C support

Inorder to support building of reusable System C components using OSCI, for Hardware
Modeling team a new configuration class x86osci_nullos has been included in SDE2.
Linux being the host platform. The CPUCLASS and CPUTYPE for this configuration being
x86 and i486 respectively and OSCLASS and OSTYPE being nullos. The toolchain is
“osci”. The compiler used for dependency generation and compilation is gcc.

4.2.3 Cadence-NcSc System C support - NxBuilder Support

Inorder to support building of reusable System C components using Cadence NC-SC, for
NxBuilder team a new configuration class hpncsc_nullos has been included in SDE2.
HP-UX being the host platform. The CPUCLASS and CPUTYPE for this configuration
being hp, OSCLASS and OSTYPE being nullos. The toolchain is “ncsc”. The compiler
used for dependency generation and compilation is ncsc.
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 106 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Installation
What is covered in this chapter?

This chapter provides information for installing and customizing SDE2 for your working
environment, including:

• A list of required tools

• Setting permissions

• Tuning scripts and makefiles

• Using SDE2 with CMSynergy

5.1 Installation

The installation instructions are part of the Release Notes [RELNOT] DVP SDE2 2.3
Release Notes, (see Bibliography) and SDE2_installation_notes_2.3.txt file.

5.2 Customization

This section includes a list and description of the required tools, permissions, information
about tuning initialization scripts, and instructions for creating a configuration class.

5.2.1 Required tools

Besides compilers (that may be project-specific), SDE2 requires some general tools for
performing the make and the dependency checks. The following table lists the tools for the
PC environment that are delivered with SDE27. For the UNIX/Linux environment the same
tools are available, but they are not supplied with SDE2, as they are UNIX/Linux platform
dependent.

Chapter 5
Installation and Customization
User Manual Version 3.8 Sep 29, 2006

7. There are different deliveries of these tools for PC. We are using the standard Cygwin delivery, because it is shareware. Some
deliveries, like MKS, perform better, but they are commercial products. So, if the you have a licence, you can use them. The
standard Cygwin delivery consists of cygwin1.dll and tools. The current version of cygwin1.dll is 1.3.22. You can find more
information in Appendix F.

Table 5-1: PC environment tools required by and delivered with SDE2
Tool Version Comment
basename

cat

chmod

cmp

cp
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 107 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Installation
The following tools are the supporting tools the current release of SDE2 has been tested
for. These tools are not delivered with SDE2. Each of these tools has set of subtools, such
as compilers, linkers, etc. The versions of these subtools can be determined by the
version of the tool. Note that SDE2 supports only one toolset. If you want to override some
of the default settings (use another compiler, etc.), you can try, but we cannot guarantee
that compiling will still work, and cannot support tools other than those suggested.

diff

dirname

doxygen [1] 1.4.3 or later Required for auto-documentation

echo

gawk 3.0.4 or later

gcc 2.95.3-5 [2] or later Required for dependency checks

gmake 3.80

ls

mkdir

pwd

sed GNU sed 3.02 or later

sort

tee

test

touch

xargs
[1] Doxygen is delivered without the hhc.exe tool. For more info about hhc.exe, read Appendix D.

[2] Note that version 2.95.2-5 assumes that _WIN32 is always defined. For tm_psos and mips_psos it could cause
problems. Therefore we do not support this version.

Table 5-1: PC environment tools required by and delivered with SDE2 <Helv9R>(Cont’d.)
Tool Version Comment

Table 5-2: Tools required by but not delivered with SDE2
Tool Version Comment

Adelante SDK Latest version Required for realsat_nullos

Arm-ads Toolset 1.1 Or Later Required for arm_cexec and armads_nullos

Arm-elf Tool Set 2.96 Or Later Required for arm_nullos only

Arm-Realview Toolset Required for armrvds_nullos

Developer Studio Version 6 or Later Required for x86_nt

Ecos GNU toolchain Required for mipsgnu_ecos

Graphviz 1.5 Or Later Required for auto-documentation graphics

GreenHills Toolchain for
INTEGRITY

Required for mipsghs_integrity

GreenHills Toolchain for osCAN Required for mipsghs_oscan

GreenHills Toolchain Required for mipsghs_nullos

Isi Diab Data Tool Set 4.3p5 Required for mips_psos only

Java 2 Runtime Environment 1.3 Required for java components
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 108 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Installation
Table 5-3: Tools required by but not delivered with SDE2 for System C Components

5.2.2 Permissions

The following table describes what parts of (the sde directory of) the SDE2 environment
may be changed by local sites.

Nxpidl 2.0.0026 Or Later Required for header files generation from idl
files. this tool is delivered both for nt (in
directory cygwin) and linux (in directory
cygwin/hp_nullos).

Perl 5.005_03 Or Later Required for build scripts

Rcc/toolchain For Rd24120 1.1.0 Or Later Required for real_nullos and real_mtos

Tornado 2.1/2.2 V5.4 Or Later Required for mips_vxworks, arm_vxworks and
x86_vxworks only

Trimedia-psos Tool Set V4.4 Or Later Required for tm_psos only

Wince Version 3.00 Required for mips_wince, arm_wince, x86_wince

Windows DDK Required for x86ddk_nt

Table 5-2: Tools required by but not delivered with SDE2 <Helv9R>(Cont’d.)
Tool Version Comment

Table 5-4:
Tool Version Comment

Cadence NC-SC on Linux Host Required for x86ncsc_nullos

Cadence NC-SC on Linux Host Required for hpncsc_nullos

GCC Required for x86osci_nullos

Table 5-5: Overview of changeable parts of SDE2
Description of the modification Location Reason

Adding initialization scripts project/sites/<site>/*.bat Each site has unique attributes with
respect to the location of tools,
boards, etc.

Specifying location of tools project/sites/<site>/linux.mk
or
project/sites/<site>/cygwin.mk

Each site has unique attributes with
respect to the location of tools

Adding maketarget<xxx>.mk sde/<configuration-class>/maketarge
t<xxx>.mk

Each site may have its own
development board containing its
own BSP and other standard
libraries.

Adding / editing
project/prjlist.txt

project/prjlist.txt Describes each of the multiproject
roots.
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 109 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Installation
5.2.3 Tuning the SDE initialization script

For each platform there is an SDE initialization script (or batch file) that sets basic
environment variables required by SDE2 and the compilers. In Table 3-5 more information
regarding these variables can be found. Table 5-6 shows the predefined scripts and batch
files that are distributed with SDE2. The scripts are in the directory
project/sites/blrsdm.

Installing the SDE2 at your own site usually means taking one or a few of these scripts as
a starting point and modifying them.

5.2.4 Tuning linux.mk

Unix hosts have different configurations for different sites. This means that tools like gawk
may be in different locations per site. The linux.mk file contains the necessary information.
Each site has to tune the linux.mk file to their local situation. For PC environments all tools
are delivered by SDE2. The cygwin.mk file contains the locations of the relevant tools. This
file is the same for all PC environments.

For Linux environments the following has to be done:

• Create an project/sites/<site> directory, where <site> is the identification of
your site, for example ehvblv (Eindhoven Business Line Video).

• Copy the project/sites/blrsdm/linux.mk file to the project/sites/<site>
directory. This file contains variables that refer to the location of the tools that are
required by the SDE2, see Table 5-7 Tools that are set by linux.mk and cygwin.mk.
For the PC environment, these tools are part of the SDE2 package. For UNIX
environments, these tools are typically available at a certain location in your UNIX
environment. For your UNIX environment you may have to change the location
values of those variables.

• Initialize the environment with UNAME=hpux (see hp_nullos script) and _TMSITE=<site>.

Table 5-6: Standard initialization scripts of SDE2
Script Used for host platform
arm_ce_debug_static_default.bat PC
arm_vxworks_default.bat PC
hp_nullos UNIX
linux_nullos Linux
mips_ce_debug_static.bat PC
mips_psos_debug_static_eb_p4032.bat PC
mips_vxworks_default.bat PC
real_mtos_default.bat PC
tm_psos_assert_static_el_tm32_winnt.bat PC
tm_psos_debug_static_el_tm32_winnt.bat PC
tm_psos_retail_static_el_tm32_winnt.bat PC
x86_ce_debug_static.bat PC
x86_nt_debug_static.bat PC
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 110 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Installation
The SDE2 will consult the project/sites/<site>/linux.mk file to find the correct
tools.

5.2.5 Tuning cygwin.mk

For PC environments no extra actions are required, except that the cygwin.mk file of the
directory project/sites/blrsdm has to be copied to your local directory
project/sites/<local site>. After that, you can initialize SDE2 using one of the
standard scripts, or a modified one, see Section 5.2.3, Tuning the SDE initialization script
on page 110.

You can tune and use different utilities (and/or versions of these utilities) than those
proposed by the SDE2 team. You can also add extra options to your utilities.

5.2.6 Tuning prjlist.txt

The file prjlist.txt describes the roots of all used multiproject trees. It is always located in the
directory <_TMROOT>/project. The file may contain environment variables defined in a
UNIX style, for example,
$_TMTGTREQPRJ ${_TMCUSTOMPRJ}

If the environment variables are used, you are responsible for setting the values of those
variables. The standard absolute path locations can also be used for this file, for example,

Table 5-7: Tools that are set by linux.mk and cygwin.mk
Variable Description

_SDE_DOT_PATH graphviz path executable. Optional.

CAT catalog command

CD change directory command

CHMOD Change mode command

CMP compare command

CP copy command

DOXYGEN Auto-documentation tool. Optional.

ECHO echo command

GAWK gawk utility

GCC gnu c++ compiler

LS List command

MAKE make command

MKDIR make directory command

RM remove command

SED sed command

SORT Sort command

TEST test command

TOUCH touch command

XARGS args command. Optional.
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 111 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Installation
c:/nexperia/infra c:/nexperia/kernel

If this file is not present, SDE2 automatically creates it with one default entry, the value of
$_TMROOT.

If you edit /touch this file, loc_list.* files will be updated when you start SDE2 for the first
time. This could lead to use of another component’s locations.

This file can also contain comment lines, starting with #

5.2.7 Tuning sde directory

There are a few makefiles, whose features are rarely used in SDE2. These makefiles are
located in the main sde directory (except autodoc.mk, which is located in the sde/autodoc
directory) and they all are included from sde/common.mk with the -include option, which means
that if they are not present, no warning message will appear. If you are sure that your
project is not using any feature described below in one of its makefiles, you can remove
the corresponding makefile and you will notice a small improvement in compilation time.
However, if your project needs the makefile, you may see strange error messages. So,
you are responsible for their removal and SDE2 does not warn you if some component
uses one of those features.

These files are:

• autodoc/autodoc.mk – Contains rules to generate Doxygen autodocumentation output.

• provided_by.mk – Contains rules to handle PROVIDED_BY construction described in
Section 3.5.2, Complex interface diversity on page 40.

• qac.mk – Please refer to Appendix J for more information QAC support in SDE2.

• rgd.mk – Contains undocumented rules for rgd tool.

• idl.mk – Contains rules for idl and header file generation

• qmore.mk – Contains rules for qmore invokation.

• lint.mk – Contains rules for lint invokation.

5.3 SDE2 on cadenv

Cadenv is NXP Semiconductors environment for CAD tools. SDE2 has been
updated/modified inorder to support cadenv environment. This section helps in installing
SDE2 on cadenv environment.

5.3.1 Installing SDE2 on cadenv

1. Log into the network as a software administrator.

2. Create the required directory structure under /cadappl:

% mkdir /cadappl/ictools/sde2

3. Set the working directory to this directory and transfer the tar file sde2_2_3.tar.gz

% cd /cadappl/ictools/sde2
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 112 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Installation
% cp <path_to_sde2_tar_file> .

4. Expand the tar file:-

% gunzip -c sde2_2_3.tar.gz | tar -xvf -

!! This will create a directory ‘sde_template’ containing the SDE2 installation. Move
this directory to 2.3.

% mv sde_template 2.3

5. Ensure the protections of the newly unpacked files as necessary. Typically this would
be rwxr_xr_x, :-

% /bin/chmod -R 755 2.3

6. Certain cadenv commands expect there to be a help file installed. If you have not
created or installed one for this package, this needs to be completed before proceeding
further with the installation. An updated help file is provided with this package, and should
be installed as follows:-

% cadenv -H sde2 /cadappl/ictools/sde2/2.3/install/sde2.hlp

These files can be edited before or after installation for any site specific information. They
are located in:- /cadappl/cadenv/hlp/sde2

7. Check the contents of the cadenv release file 'sde2.rel' in the
'sde2/2.3/install' directory. Create the cadenv release file as follows, or by using
the method favoured by your site:-

% cadenv -C -r 2.3 sde2 /cadappl/ictools/sde2/2.3/install/sde2.rel

8. To make the package available to users it must be mapped onto a cadenv version. For
example, it can be mapped to the "cur"rent version as follows:-

% cadenv -M -r 2.3 sde2 cur

Users can then install the "cur"rent SDE2 version with:-

% cadenv -c sde2

10. You can now archive or delete the tar file:

sde2_2_3.tar.gz

5.3.2 User specific customizations

SDE2 directory structure under cadenv is not writable by all users except for the system
administrator. But each user needs to have write permission to the project directory under
SDE2 installation directory to have his own settings. To work around this problems SDE2
has an environment variable _TMPROJECT which needs to be set when using SDE2 in
cadenv environment. If this environment variable is set then SDE2 would look into the
contents of this directory for local settings instead of $(_TMROOT)/project directory.
The possible contents of the $(_TMPROJECT) directory are:

buildlist.txtlist of components to be built by build.pl script
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 113 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Installation
configurations.txtconfiguration list supported by the project

prjlist.txtlocation of the project components

sites/site specific settings

$(DIR_CONFIG)/user specific maketarget_$(_TMBSL).mk files

5.3.3 SDE2 cadenv wrapper scripts

SDE2 delivers 4 wrapper scripts for cadenv. The following are the details of the wrapper
scripts provided:

sdemake Wrapper script for gmake.

sdedocWrapper script for viewing SDE2 documentation

usage: sdedoc [start|manual|release] for Getting started manual SDE2

User manual and Release notes respectively

sdebuildWrapper script for build.pl perl script

sdebuild_exeWrapper script for build_exe.pl perl script

5.3.4 Other software tools that are required in cadenv

Other tools that need to be cadenved are as follows:

gmake - 3.80

gcc -2.95.2 or later

acrobat -4.05 or later

perl-5.6.1 or later

5.4 SDE2 and CMSynergy

In using a component-based work environment, each component may have its own life
cycle. Therefore it is logical that each component is mapped on a CMSynergy project.

These CMSynergy projects must be made into subprojects that are linked to an arbitrary
main project, because this is the only way to maintain the directory structure proposed by
this document.

The sde directory (containing all generic makefiles and scripts) possesses its own life
cycle. This directory is also mapped as a CMSynergy project.
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 114 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Installation
Below, is an example directory structure of a project utv, where each underlined directory
is mapped on a CMSynergy project. Note that the first three directories are introduced by
CMSynergy.

Note that the CMSynergy delimiter (in this case -, it might be also =, etc.) cannot be a part
of the names of directories or files. This is a CMSynergy requirement.

Figure 5-1: Directory structure of a project utv
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 115 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Java Support
What is covered in this appendix?

This appendix describes a recommended standard way to organize components
containing Java source code using SDE2, including:

• Java implementation and possible problems

• Java cross compilation and compilation class paths

• Implementation principles and limitations

• Information about user-configurable variables and internal SDE2 variables

• Searching the javac class and source files

A.1 Quick start

This is a Java makefile example:

Appendix A
Java Building
User Manual Version 3.8 Sep 29, 2006

#---
Makefile for java component
#---

DIR_LOCAL = comps/...
include $(_TMROOT)/sde/environment.mk

#---
Source environment variables
#---

Default JAVA_SOURCEPATHS is src:
#JAVA_SOURCEPATHS = src/some_configuration src

JAVA_CLASSES = \
com.nxp.sde.Test1 \
com.nxp.sde.Test2

JAVA_JNICLASSES = \
com.nxp.sde.Test1

JAVA_NMICLASSES = \
com.nxp.sde.Test2

C_SOURCES = \
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 116 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Java Support
src/com/nxp/sde/Test1.c \
src/com/nxp/sde/Test2.c

For jni.h:
DIR_INCLUDE += $(JAVATOP)/include
for generated jni/nmi files:
DIR_INCLUDE += $(JAVA_INCDIR)

#---
Which other Java components does this target require to compile
Append $(JAVA_REL_SUFFIX) if you want the same configuration as this
component.
#---
JAVA_REQUIRES = tmComp1$(JAVA_REL_SUFFIX)

#---
System class paths
#---
Required: set JAVA_BOOTCLASSPATHS and/or JAVA_EXTDIRS:
Note: Should use to JVM class path used on embedded target:
Possibly set outside this makefile.
#JAVA_BOOTCLASSPATHS =
JAVA_EXTDIRS =

#---
Directories/jars/zips where the 3rd party classes are stored
These are added at the end of -classpath.
#---
LOCAL_CLASSPATHS =

#---
local FLAGS
#---
LOCAL_JAVACFLAGS =
LOCAL_JAVAHFLAGS =
LOCAL_JAVAJARFLAGS =
LOCAL_CFLAGS =
LOCAL_CXXFLAGS =

#---
all: configuration java lib

#***
Do not change the following include
#***
include $(DIR_SDE)/makejava.mk
ifneq ($(DIR_CONFIG),_)
include $(DIR_SDE)/$(DIR_CONFIG)/makelib.mk
endif
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 117 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Java Support
A.2 Java implementation

A.2.1 Relevant problem aspects

The following aspects are relevant for building Java code:

1. Which java source files need compiling.

2. Compatibility of output: JDK 1.1, 1.2 or 1.3.

3. Debug options.

4. Classpath for Java system libraries. Usually you use cross-compilation for embedded
systems, and so you need to be careful which system class path you use (javac option
-bootclasspath and -extdirs)

5. Classpath for Java application reference libraries.

6. Where to store results (classes directory, jni/nmi header files).

7. Native methods, and JNI and NMI header file generation.

8. Which Java compiler is used, and which javah/JavaJar program is used.

9. Name(s) of output JAR file

10. Command-line length problems

A.2.2 Java cross-compilation

Cross-compilation is usually used with embedded applications. For Java that means you
need to provide the -bootclasspath and/or -extdirs options for system libraries. Ideally the
embedded JVM is provided as an SDE2-compatible component.

To help ensure that users do not inadvertently use JDK system class libraries, the SDE2
requires the definition of JAVA_BOOTCLASSPATHS and/or JAVA_EXTDIRS variables.

A.2.3 Java compilation class path

Java files in a component may need Java classes/JAR files from other components. This
is provided for as follows:

1. If the referenced Java classes are part of another SDE2 component, then just add the
name of the component to the JAVA_REQUIRES variable (as for C-interface
dependencies between components, with optional $(JAVA_REL_SUFFIX)).

2. For external class libraries, add directories, JAR and zip files to the
LOCAL_CLASSPATH variable.

3. SDE2 will form the -classpath option value from:

a. LOCAL_CLASSPATHS0

b. JAVA_CLASSESDIR – this is where the component will generate its own class files

c. LOCAL_CLASSPATHS1

d. JAR file list for each of the JAVA_REQUIRES

e. LOCAL_CLASSPATHS
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 118 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Java Support
A.2.4 Implementation principles

Certain principles govern the implementation guidelines:

1. Being able to redefine almost every option.

2. Having useful default values if possible.

3. Use of prefixes in make variables and internal targets.

4. Check for undefined or empty variable errors: generate error and stop.

A.2.5 Implementation limitations

There are some limitations and implementation choices:

1. A component can only make one JAR file. (Same restriction as for # object libraries.)

2. The name of the resultant JAR file is <component_name>[<suffix>.jar. The suffix
$(JAVA_REL_SUFFIX) is _g for debug builds. (Component name is, until new SDE2
release: tail of $(DIR_LOCAL)).

A.2.6 Implementation approach

A problem exists with specifying which Java files to compile, and then in specifying
dependencies for the resultant.class file. Given a Java source file name, the name of the
class is derivable, but you cannot determine the fully qualified class name including the
package name. For that you have to look into the Java source file.

The Sun pJava makefiles solve this by specifying the required fully qualified class names
that need to be compiled. Using textual substitution you can derive names of class files
and Java files. The Java file names are not necessarily in the right directory, therefore use
the VPATH construct to allow make to find them.

The approach is thus:

1. The user's makefile defines JAVA_CLASSES.

2. SDE2 defines JAVA_CLASSFILES from JAVA_CLASSES by changing . to /, putting
$(JAVA_CLASSESDIR) in front and appending.class.

3. The user's makefile adds the java target to the all target dependencies before a lib
target.

4. The user specifies the required Java components in JAVA_REQUIRES. The search path
in order of priorities is:

• lib/jar release directory

• lib/jar component directory (binary release support)

5. SDE2 defines Java dependent on $(JAVA_CLASSFILES) and has a rule for running
$(JAVAJAR).

6. SDE2 defines pattern rule $(JAVA_CLASSESDIR)/%.class : %.java, which if invoked will
echo the Java file name to a temporary Java file list file.

7. The temporary Java file list file is passed to $(JAVAC).
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 119 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Java Support
8. After compilation $(JAVAJAR) is run, archiving the complete $(JAVA_CLASSESDIR)
directory.

Native methods need special provisions. This is catered to as follows:

1. Any class having native JNI methods needs to be added to the variable
JAVA_JNICLASSES.

2. Any class having native NMI methods needs to be added to the variable
JAVA_NMICLASSES.

3. The Java target will generate include files for these in the inc/jni8 or inc/nmi9

subdirectories of the component build tree. For example if you add com.nxp.sde.Test1 to
JAVA_JNICLASSES, the file inc/jni/com_nxp_sde_Test1.h will be generated.

4. To use the generated jni/nmi files, you have to add one or more paths to your
DIR_INCLUDE variable. By default you should always include your jni files as #include
"jni/Java_.....h", and add $(JAVA_INCDIR) to DIR_INCLUDE. However, if you do things
differently, then this depends on whether you have overridden the default values of
JAVA_JNIDIR and/or JAVA_NMIDIR, and on whether you include jni or nmi files without
the jni/ or nmi/ prefix. You should also ensure that the relevant jni.h (and jni_md.h) can
be found; jni.h often sits in $(JAVATOP)/include. Which jni_md.h should be used,
depends on your compiler.

A.2.7 User-configurable variables

All user-configurable variables are never redefined by the SDE2. Table A-1 lists the
variables needed to build Java components.

8. JNI files are generated into $(JAVA_JNIDIR) (which is by default $(JAVA_INCDIR)/jni)
9. NMI files are generated into $(JAVA_NMIDIR) (which is by default $(JAVA_INCDIR)/nmi)

Table A-1: Required and/or customary variables needed to build in Java
Name Use
JAVATOP Directory with JDK to use for compiling. Should be JDK 1.2 or later

compatible.

JAVA_CLASSES Required list of Java classes to compile. Note these are class names
including package prefix.

JAVA_JNICLASSES Optional list of Java classes having JNI methods. Note these are
class names including package prefix, as for JAVA_CLASSES.

JAVA_NMICLASSES Optional list of Java classes having NMI methods. Note these are
class names including package prefix, as for JAVA_CLASSES.

JAVA_BOOTCLASSPATHS Variable with list of white-space-separated paths for option
-bootclasspath. Required, unless JAVA_EXTDIRS is defined.

JAVA_EXTDIRS List of white-space-separated paths for option -extdirs. Required,
unless JAVA_BOOTCLASSPATHS is defined.

LOCAL_CLASSPATHS List of white-space-separated directories/JARS/zips added to the
classpath.
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 120 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Java Support
The following variables are optional variables, that usually:

• Do not need defining

• Have sensible defaults

Table A-1 lists the optional java makefile variables.

JAVA_SOURCEPATHS List of white-space-separated paths for option -sourcepath. Default: src

JAVA_REQUIRES List of component names that this component requires to compile.
Usual format: <name>$(JAVA_REL_SUFFIX)....

JAVA_CLASSES_WILDCARDS List of <directory!java_file> separated with ! and containing the
wildcard symbol. For example,
if directory aa contains files bb/cc.java and bb/dd.java,
then JAVA_CLASSES_WILDCARDS = aa!*/*.java
results in the classes bb.cc and bb.dd being added to JAVA_CLASSES.

Table A-1: Required and/or customary variables needed to build in Java <Helv9R>(Cont’d.)
Name Use

Table A-2: Optional Java makefile variables
Name Use
JAVAC Java compiler to use. Should be JDK 1.2 or later. Currently cannot be

jikes. Default: $(JAVATOP)/bin/javac.exe

JAVAH Java header program. Default: as for JAVAC, but with javah.exe

JAVAJAR Java JAR program. Default: as for JAVAH, but with jar.exe

LOCAL_JAVACFLAGS Additional user options to pass to $(JAVAC).

LOCAL_JAVAHFLAGS Additional user options to pass to $(JAVAH).

LOCAL_JAVAJARFLAGS Additional user options to pass to $(JAVAJAR).

JAVA_REL_SUFFIX This is used to form the JAVA_CLASSESDIR and JAVA_JARFILE
names. Default: _g for debug builds, empty otherwise.

JAVA_DIR_BUILD Root directory for Java build results for component.
Default is the same as the other results for the component:
$(_TMTGTBUILDROOT)/$(DIR_LOCAL)

JAVA_TARGET Base name used for resultant JAR file. Default: same as for object
library result (last part of DIR_LOCAL).

JAVA_JARFILE Resultant JAR file.
Default: jar/$(JAVA_TARGET)$(JAVA_REL_SUFFIX).jar
Inside the comps/generated/lib directory of the build.

JAVA_CLASSESDIR Directory where .class files will be stored. Default:
$(JAVA_DIR_BUILD)/classes$(JAVA_REL_SUFFIX)

JAVA_INCDIR Directory where jni and nmi include directories will be created.
Used in definition of JAVA_JNIDIR and JAVA_NMIDIR.
Default: $(JAVA_DIR_BUILD)/inc

JAVA_JNIDIR Directory where generated jni header files will be stored.
Default: $(JAVA_INCDIR)/jni

JAVA_NMIDIR Directory where generated nmi header files will be stored.
Default: $(JAVA_INCDIR)/nmi
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 121 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Java Support
A.2.8 Internal SDE2 variables

Table A-3 lists variables internal to SDE2.

A.3 javac class and source file search mechanism

It is useful to repeat how javac searches for class and source files (this is from the Sun JDK
1.3 javac documentation):

“When the compiler needs type information, it looks for a source file or class file
which defines the type. The compiler searches first in the bootstrap and extension
classes, then in the user class path. The user class path is defined by setting the
CLASSPATH environment variable or by using the -classpath command line option. If you
use the -sourcepath option, the compiler searches the indicated path for source files;
otherwise the compiler searches the user class path both for class files and source
files. You can specify different bootstrap or extension classes with the options
-bootclasspath and -extdirs options.

A successful type search may produce a class file, a source file, or both. Here is how
javac handles each situation:

Search produces a class file but no source file: javac uses the class file.

Search produces a source file but no class file: javac compiles the source file and uses
the resulting class file.

JAVA_DEBUG Controls the use of javac -g option; this option is only used if this
variable is defined. Default:

-g:none if $(_TMTGTREL)==retail

-g if $(_TMTGTREL)==debug
otherwise empty [1].
Old options dbg and ret/release are also supported.

JAVA_TARGETVERSION Value of option -target for $(JAVAC). Default: 1.1. The -target option is
only used if this variable is not blank.

LOCAL_CLASSDEPENDS Additional files that .class files are dependent on.
[1] If no -g option is given to javac, then line number and source file information are recorded, which is useful in an

assert style build type.

Table A-2: Optional Java makefile variables <Helv9R>(Cont’d.)
Name Use

Table A-3: Internal SDE2 variables
Name Use
JAVA_COPTS Real options passed to $(JAVAC). Created from LOCAL_JAVACFLAGS,

plus options derived from JAVA_CLASSESDIR
JAVA_BOOTCLASSPATHS JAVA_EXTDIRS LOCAL_CLASSPATH*
JAVA_SOURCEPATHS JAVA_DEBUG

_SDE_CLASSDEPENDS Contains files that SDE2 considers important enough to recompile all
.class files.
Default value: makefile and all .jar and .zip files referenced by
JAVA_BOOTCLASSPATHS and JAVA_EXTDIRS
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 122 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Java Support
Search produces both a source file and a class file: javac determines whether the
class file is out of date. If the class file is out of date, javac recompiles the source file
and uses the updated class file. Otherwise, javac just uses the class file.

javac considers a class file out of date only if it is older than the source file. (The
-Xdepend option specifies a slower but more reliable procedure.)

Note that javac can silently compile source files not mentioned on the command line.
Use the -verbose option to trace automatic compilation.”
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 123 of 167

STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 124 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Assembler Support

What is covered in this appendix?

This appendix describes how to use assembler source files with SDE2.

B.1 Using assembler source files with SDE2

Assembler source files are located in the component src directory or its subdirectories. A
list of their names has to be in the S_SOURCES makefile variable. S_SOURCES contains
relative locations, names and extensions of all assembler files. The assembler files are
treated in the same way as C/C++ source files. However, they are not reusable for
different platforms. You can put them in the separate directories for each separate
platform (like tmComp7 for C files).

The assembler file extensions that are supported in SDE2 are:

.s, .S, .asm

The rule states that.S assembler files need to go through the C preprocessor before being
assembled, but .s assembler files do not.

You can set your own compilation options in _TMTGTAOPTS and TARGET_AFLAGS. The order
of the compilation options in the compiler line is:
<_SDE_AOPTS_FILE1><_SDE_AOPTS_FILE2><_SDE_AOPTS_FILE3><_TMTGTAOPTS><TARGET_AFL
AGS>

The SDE2 stores assembler options in <DIR_INTERM>/a.opt. If the options not only depend
on the component makefile (default), but also on other makefiles, you can set the list of all
dependencies in _SDE_AOPTFILE_DEPENDS.

.

Appendix B
Assembler Support
User Manual Version 3.8 Sep 29, 2006

NXP Semiconductors UM SDE2 2.3
Appendix : Visual Studio Integration
What is covered in this appendix?

This appendix describes the extra actions needed to use Microsoft Developer Studio
(MSDEV) in combination with DVP-SDE2, including:

• Setting up the component directory structure

• Starting a Visual C++ project

• Using Microsoft Developer Studio to build a DVP2 component

• Setting up the browse-info database

In Microsoft Visual C++, the Project Workspace is a container for your development
projects. When you create a new project, a workspace is created at the same time. You
use the Project Workspace window to view and access the various elements of your
projects. This means that we use a project to generate/develop our code, and debug it for
the WinNT versions.

C.1 Setting up your component's directory structure

The DVP-SDE2 has no predefined location for Visual C++ project files. We recommend
you have a different specific project for each component you are developing. This
suggests that the project's files should be located next to the component. The internal
structure of the component’s directory is extended with a Microsoft Developer Studio
directory for the tmComp11 component.

The msdev_tmComp11 directory is meant to hold all files related to this component's
Visual C++ project, including:

• Browse-info files for this component

• Visual C++ project administration files

• All scripts and temporary files to use the Developer Studio capabilities.

Appendix C
Visual Studio Integration
User Manual Version 3.8 Sep 29, 2006

Figure 3-1: Directory structure for tmComp11 component
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 125 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Visual Studio Integration
Note that the msdev_tmComp11 directory is not part of the DVP component release,
CMSynergy™ might however put it under version control.

Complete the following steps to set up your component’s directory structure.

1. Create the directory structure for your new component, including the
msdev_<comp-name> directory next to the component.

2. Copy the following batch and script files from the <msdev/msdev_tmComp11>
example directory to your newly created msdev_<comp-name> directory:
make_comp.bat, make_bsc.bat

3. Change the read-only attribute of the following batch file:
<your SDE2_Root>/project/sites/blrsdm/x86_nt_debug_static_default.bat to make it writable.

4. Tailoring of these files is explained in Section C.3, Building the DVP2 component from
within the Developer Studio on page 127 and will be addressed later.

C.2 Starting the component's Visual C++ project

Each project has a project type, which you choose when you create the project. The
project type specifies what to generate and also specifies some default settings required
in order to build that output type.

Because we don't want to build any Microsoft-specific applications we don't want Visual
C++ to add any predefined libraries. To do so, we use the utility project, in which no files
are added to the project. The utility project does not generate any predetermined output
files, such as a.lib,.dll or.exe.

Complete the following step to create your MSDEV project:

1. Start MSDEV.

Figure C-2: Create the msdev_tmComp11 project
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 126 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Visual Studio Integration
2. Select File → New → Project.

Now you see a dialog window.

3. Select Utility Project, Project name: msdev_<your-comp>, Location: <your SDE2
path/sde_template/msdev>. Select Create new workspace, mark Win32 Platform.

4. Click OK.

5. Click OK again to finish creating your project.

Complete the following steps to add files to your project.

1. Select Project “Add to project” Files.

2. Select your component’s files; both *.c and *.h.

Do not add external header files.

3. Click OK.

Now your files are visible in MSDEV's file-view.

C.3 Building the DVP2 component from within the Developer Studio

The DVP-SDE2 uses a proprietary build process that does not comply with the
make-structure of MSDEV. The DVP-SDE2 build process is command-line based and
cannot be called from within MSDEV using the build command.

The DVP2 build process can be automated using script files:

• <make_comp.bat>10 – Needs minimal tailoring per component

and11:

• <x86_nt_debug_static_default.bat> – Needs tailoring

• <make_comp.bat> – Needs no tailoring

• <make_comp_bsc.bat> – Needs no tailoring

• <parse.pl> – Needs no tailoring

which are called from within MSDEV by customized tools.

Now make the necessary changes to the following files to tailor the files to your needs:

• <make_comp.bat> in <your SDE2_ROOT>/msdev/msdev_<your_comp>

• <x86_nt_debug_static_default.bat> in <your SDE2_ROOT>/project/sites/blrsdm

C.3.1 Customizing MSDEV to call the build scripts

MSDEV allows you to customize the Tools menu by adding, editing, and deleting menu
items. You can add frequently used utilities to the Tools menu and run them from within
MSDEV. We use this option to add a tool calling <make_comp.bat>.

Complete the following steps to add the DVP2 make tool:

10. This file is located in <your DVP2_ROOT>/msdev/msdev_<your_comp>
11. These files are located in <your DVP2_ROOT>/project/sites/blrsdm
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 127 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Visual Studio Integration
1. From the Tools menu, click Customize, and then click the Tools tab.

2. In the Menu Contents box, scroll to the bottom of the list, double-click the blank line
(indicated by an empty rectangle), and type the name of the tool, for example, Make
DVP2 component.

3. Press Enter.

4. In the Command field, type:

<Your SDE2_Root>\project\sites\blrsdm\make_comp.bat

5. In the Arguments field, type:

$(WkspDir)

4. In the Initial Directory, type:

$(WkspDir)

6. Click to select the Use Output Window check box.

Now you should see a window like the one shown in Figure C-1.

7. Click Close.

The DVP(-SDE)2 make tool can be called from the Tools menu. When called, the tool will
not ask for arguments. The result will be the start of the component's build, and the output
will be seen in the MSDEV output window.

 C.3.1 Error parsing

Because you selected the Use Output Window check box for the Make DVP(-SDE)2
component tool on the Tools tab of the Customize dialog box (see Figure C-1), the Output
window’s error parser interprets the output of the tool. You can jump to source code
syntax errors (and warnings) directly from the error list in the Output window.

Figure C-1: Adding the DVP2 make tool
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 128 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Visual Studio Integration
To do so, the errors generated by the 2 make tool are caught and parsed by the <parse.pl>
perl script, and the formatted errors/warnings are forwarded to MSDEV. No special
actions are necessary to arrange this.

C.4 Using code browse information

MSDEV uses a browse information database to hold the reference information of all
source files within a project. Therefore, to make use of the browsing capabilities of
MSDEV you first need to build the browse information database.

Both DVP1-SDE and DVP-SDE2 have a proprietary build process, which does not comply
with the make structure of MSDEV. Therefore the MSDEV internal generation of
code-browse information (which depends highly on the make structure) cannot be used.
The code-browse information can however be generated from the command line, and can
then be used in MSDEV.

Because DVP1-SDE and DVP-SDE2 have different build structures, the code-browse
information for MSDEV is generated in different ways.

C.4.1 Building DVP1 component browse information

All TSR-A1 development is done using the DVP-SDE2; as a result, there are no changes
in the existing DVP1 tree. The code-browse information database for the DVP1 tree has to
be built just once, and the generated <DVP1.bsc> file can be used in MSDEV (e.g., to study
the existing DVP1 code).

C.4.2 Building DVP2 component browse information

Code-browse information for your DVP2 component (i.e., your project’s component) is
generated in two phases:

1. When building for Pentium-WinNT, for each <source.c> file, a corresponding <source.sbr>
file is generated in the <msdev_<comp_name>> directory. This is automatically done
when building for WinNT provided that you add a local compile flag for your WinNT in
your local makefile.

Add the compile flag by adding the following custom options to your makefile.

The generated.sbr files are now in your <msdev_<comp_name>> directory, and will be
collected in one component's browse-info file <comp_name>.bsc using the <make_bsc.bat>
MS-DOS batch file.

2. Tailor the DVP2_ROOT_DIR and COMP_NAME variables in <Your
DVP2_ROOT>/msdev/msdev_<your_comp>/make_bsc.bat

#---
Options for the C compiler
#---
_TMTGTCOPTS= -Fr
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 129 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Visual Studio Integration
C.4.3 Using DVP2 component browse information

To call the <make_bsc.bat> file from within MSDEV, you have to add a tool in MSDEV, in the
same way the DVP2 make tool was created:

Complete the following steps to add the Generate DVP2 component browse info tool.

1. On the Tools menu, select Customize, and then click the Tools tab.

2. In the Menu Contents box, scroll to the bottom of the list, double-click the blank line
(indicated by an empty rectangle), type the name of the tool, for example Generate DVP2
component browse info.

3. Press Enter.

4. In the Command field type:

<DVP2_Root>\sde\sites\ehvsle_a1\make_comp_bsc.bat

5. In the Arguments field type:

$(WkspDir)

6. In the Initial directory field type:

$(WkspDir)

7. Click to select the Use Output Window check box.

Now you should see a window like the one shown in Figure C-2.

8. Click Close.

The Generate Browse Information tool is called from the Tools menu. When called, the
tool does not ask for arguments. The result is the start of the collection of the component's
browse-info files, and the output will be seen in the MSDEV output window.

Note: When generating a new version of your component's browse-info file, be sure to
close the browse-info file in MSDEV (using Alt-T-F).

Figure C-2: Add tool to generate DVP2 component browse info
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 130 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Visual Studio Integration
When the component's browse-info file is successfully created, a file named
<comp_name.bsc> exists in your <msdev_<comp_name>> directory.

Complete the following steps to load the component browse-info into MSDEV.

1. Select File → Open.

2. Browse to your generated <comp_name.bsc> file, and select Open.
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 131 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Autodocumentation
What is covered in this appendix?

This appendix contains an overview of the document generating tool Doxygen, as well as
instructions for using Doxygen with SDE2.

D.1 Doxygen overview

SDE2 supports the generation of documentation from source code with the tool Doxygen.
The currently supported version is 1.4.3.

This tool is a freeware tool that is delivered with the PC distribution of SDE2. For Unix, the
tool can be downloaded from http://www.doxygen.org.

Autodocumentation only makes sense when the source code contains Doxygen tags and
comments. More information about these tags and their use, and features of doxygen can
be found in sde/autodoc/docs/14_user_doc. Doxygen has built-in support to generate inheritance
diagrams for C/C++/Java classes. Doxygen can use the "dot" tool from graphviz 1.16 to
generate more advanced diagrams and graphs. Graphviz is an open-source,
cross-platform graph drawing toolkit from AT&T and Lucent Bell Labs and can be found at
http://www.research.att.com/sw/tools/graphviz.

Note: SDE2 does not include hhc.exe. This file is delivered by Microsoft and may not be
redistributed. However, you can downloaded it from:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/htmlhelp/html/vsconHH1Start.asp
Put it in your /sde_template/sde/autodoc directory. If you deliver SDE2 to external
customers, remove this file from SDE2 tree.

The following information is given by Dimitri van Heesch, the author of Doxygen:

“All doxygen does is generate a HTML help project file. Doxygen's license explicitly
permits a user to use the output generated by doxygen for any purpose, so also in
combination with non-GPLed tools (like hhc.exe). By setting the GENERATE_TREEVIEW
option to YES in the config file, Doxygen can also generate a HTML help a-like output
in plain HTML + Javascript”.

D.2 Creating documentation from the component directory

SDE2 supports the generation of both user documentation and design documentation in
HTML,RTF, PDF and LaTeX formats. The type of documentation to be generated can be
controlled by the environment variable _TMDOC. The values for this environment variable
is comma separated, the possible values are html, rtf, pdf and tex. Eg: If _TMDOC=pdf,html
only PDF and HTML documents will be generated. The differences are found in the level
of detail. User documentation is extracted from the public header files of a component.
Design documentation is extracted from all source and header files of a component.

Appendix D
Autodocumentation
User Manual Version 3.8 Sep 29, 2006
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 132 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Autodocumentation
SDE2 provides information about the required components with hyperlinks, required
libraries with their diversity flavors (only for design docs) and whether the component is
required in debug, assert or retail version. All hyperlinks between different component
documentation are made based on REQUIRES, JAVA_REQUIRES, _SDE_IMPORT_LIBS,
_SDE_IMPORT_DLLS12 and _<ComponentName>_SUFFIX variables in the makefile/SDE2.

D.2.1 User documentation

User documentation of a component is generated by going to the component’s directory
and typing:
gmake userdoc

The result is the directory
$(_TMTGTBUILDROOT)/comps/<component>/docs/14_user_doc/html containing
HTML files. The entry point is index.html for the HTML generation.

$(_TMTGTBUILDROOT)/comps/<component>/docs/14_user_doc/rtf containing RTF
file

$(_TMTGTBUILDROOT)/comps/<component>/docs/14_user_doc/pdf containing PDF
file

$(_TMTGTBUILDROOT)/comps/<component>/docs/14_user_doc/latex containing
LaTeX files

D.2.2 Design documentation

Design documentation of a component is generated by going to the component’s
directory and typing:
gmake devdoc

The result is the directory
$(_TMTGTBUILDROOT)/<components>/tmComp1/docs/03_arch_dsgn/html
containing html files. The entry point is index.html.

$(_TMTGTBUILDROOT)/comps/<component>/docs/03_arch_dsgn/rtf containing
RTF file

$(_TMTGTBUILDROOT)/comps/<component>/docs/03_arch_dsgn/pdf containing
PDF file

$(_TMTGTBUILDROOT)/comps/<component>/docs/03_arch_dsgn/latex containing
LaTeX files

In both cases, your component makefile should include (indirectly via makelib.mk or
maketarget.mk) common.mk. If not, you have to include autodoc.mk in your makefile.

For generating PDF documents epstopdf and pdflatex should be installed on the system
and also defined the _EPSTOPDF and _PDFLATEX environment variables to absolute
path of these executables.

12. _SDE_IMPORT_DLLS depends on whether DLL is already generated, so it may be the case that the component generates a DLL,
but this component is mentioned in _SDE_IMPORT_LIBS instead of _SDE_IMPORT_DLLS.
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 133 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Autodocumentation
eg: set _EPSTOPDF=c:/epstopdf/epstopdf.exe

set _PDFLATEX=c:/miktex/bin/pdflatex.exe

D.2.3 User configurable Auto Documentation variables

The following variables can be configured by setting these variables in either the
environment or the component/application makefile. If not set, SDE2 would set these
variables to default values. For more details on the definistions of the variables refer the
User Guide/Help of Doxygen located in <_TMROOT>/sde/autodoc/docs/09_usr_doc/
directory (filename:doxygen_manual.chm).
DOC_VERSION

DOC_STATUS

DOC_AUTHOR

DOC_LOGO

DOC_COMPNAME

DOC_COMP_DIR

DOC_FILES2COPY

DOC_FILES2COPY_user

DOC_FILES2COPY_dev

DOC_doxyfile

DOC_PROJECT_NAME

DOC_PROJECT_NUMBER

DOC_OUTPUT_LANGUAGE

DOC_OUTPUT_DIRECTORY_user

DOC_OUTPUT_DIRECTORY_dev

DOC_OUTPUT_DIRECTORY

DOC_DISABLE_INDEX

DOC_EXTRACT_ALL_user

DOC_EXTRACT_ALL_dev

DOC_EXTRACT_ALL
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 134 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Autodocumentation
DOC_EXTRACT_PRIVATE_user

DOC_EXTRACT_PRIVATE_dev

DOC_EXTRACT_PRIVATE

DOC_HIDE_UNDOC_MEMBERS

DOC_HIDE_UNDOC_CLASSES

DOC_BRIEF_MEMBER_DESC

DOC_REPEAT_BRIEF

DOC_ALWAYS_DETAILED_SEC

DOC_FULL_PATH_NAMES

DOC_STRIP_FROM_PATH

DOC_INTERNAL_DOCS_user

DOC_INTERNAL_DOCS_dev

DOC_INTERNAL_DOCS

DOC_CLASS_DIAGRAMS

DOC_SOURCE_BROWSER_user

DOC_SOURCE_BROWSER_dev

DOC_SOURCE_BROWSER

DOC_INLINE_SOURCES

DOC_STRIP_CODE_COMMENTS

DOC_CASE_SENSE_NAMES

DOC_VERBATIM_HEADERS

DOC_SHOW_INCLUDE_FILES

DOC_JAVADOC_AUTOBRIEF

DOC_INHERIT_DOCS

DOC_INLINE_INFO

DOC_SORT_MEMBER_DOCS

DOC_TAB_SIZE

DOC_ENABLED_SECTIONS

DOC_QUIET

DOC_WARNINGS
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 135 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Autodocumentation
DOC_WARN_IF_UNDOCUMENTED

DOC_INPUT_user

DOC_INPUT_dev

DOC_INPUT

DOC_FILE_PATTERNS_user

DOC_FILE_PATTERNS_dev
DOC_FILE_PATTERNS

DOC_RECURSIVE_user

DOC_RECURSIVE_dev

DOC_RECURSIVE

DOC_EXCLUDE

DOC_EXCLUDE_PATTERNS

DOC_EXAMPLE_PATH

DOC_EXAMPLE_PATTERNS

DOC_IMAGE_PATH

DOC_INPUT_FILTER

DOC_ALPHABETICAL_INDEX

DOC_COLS_IN_ALPHA_INDEX

DOC_IGNORE_PREFIX

DOC_GENERATE_HTML

DOC_HTML_OUTPUT

DOC_HTML_STYLESHEET

DOC_HTML_ALIGN_MEMBERS

DOC_GENERATE_HTMLHELP

DOC_HTML_HEADER_TPL_user

DOC_HTML_HEADER_TPL_dev

DOC_HTML_HEADER_TPL

DOC_HTML_FOOTER_TPL_user

DOC_HTML_FOOTER_TPL_dev

DOC_HTML_FOOTER_TPL
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 136 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Autodocumentation
DOC_GENERATE_LATEX

DOC_LATEX_OUTPUT

DOC_COMPACT_LATEX

DOC_PAPER_TYPE

DOC_EXTRA_PACKAGES

DOC_PDF_HYPERLINKS

DOC_LATEX_BATCHMODE

DOC_LATEX_HEADER_TPL_user

DOC_LATEX_HEADER_TPL_dev

DOC_LATEX_HEADER_TPL

DOC_GENERATE_RTF
DOC_RTF_OUTPUT

DOC_COMPACT_RTF

DOC_RTF_HYPERLINKS

DOC_GENERATE_PDF
DOC_PDF_HYPERLINKS

DOC_GENERATE_MAN

DOC_MAN_OUTPUT

DOC_MAN_EXTENSION

DOC_ENABLE_PREPROCESSING

DOC_MACRO_EXPANSION

DOC_SEARCH_INCLUDES

DOC_INCLUDE_PATH

DOC_PREDEFINED

DOC_EXPAND_ONLY_PREDEF

DOC_TAGFILES

DOC_GENERATE_TAGFILE

DOC_ALLEXTERNALS

DOC_PERL_PATH

DOC_CLASS_GRAPH

DOC_COLLABORATION_GRAPH
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 137 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Autodocumentation
DOC_INCLUDE_GRAPH

DOC_GRAPHICAL_HIERARCHY

DOC_SEARCHENGINE

DOC_CGI_NAME

DOC_CGI_URL

DOC_DOC_URL

DOC_DOC_ABSPATH

DOC_BIN_ABSPATH

DOC_EXT_DOC_PATHS
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 138 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Docjet
What is covered in this appendix?

This appendix contains an overview of the document generating tool Docjet, as well as
instructions for using Docjet with SDE2.

E.1 Docjet overview

SDE2 supports the generation of documentation from source code with the tool Docjet.
The currently supported version is 5.2.

This tool is a free to try tool that can be downloaded from http://www.tall-tree.com/sdk.php4

Autodocumentation only makes sense when the source code contains Docjet tags and
comments.

SDE2 does not include htmlhelp.exe. This file is delivered by Microsoft and may not be
redistributed. However, you can download it from:
http://msdn.microsoft.com/library/default.asp?URL=/library/tools/htmlhelp/chm/hh1start.htm
and install it on your local system.

E.2 Creating documentation from the component directory

SDE2 supports the generation documentation HTML and Microcoft Help (.cfm) formats.
User documentation.

DOCJET_HOME environment variable needs to be defined and set to the installation
location of Docjet software.

For eg:

set DOCJET_HOME=d:/progra~1/talltree/Docjet

Documentation of a component can be generated by running the command in the
component directory:

gmake docjet

Documents will be generated in the component directory under the Documentation/ directory.

Docjet uses the config.djt located in the $_TMROOT/sde/docjet/ directory for generating
documents. If one needs to use a user defined configuration file then the DOCJET_CONFIG
environment variable needs to be defined to the location of the configuration file.

Appendix E
Autodocumentation - Docjet
User Manual Version 3.8 Sep 29, 2006
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 139 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Docjet
For eg:

set DOCJET_CONFIG=d:/sde2.djt
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 140 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Make Utilities and Cygwin
What is covered in this appendix?

This appendix background regarding different versions of GNU make and Cygwin, and
when it is appropriate to use which version.

F.1 GNU make utility

Only one GNU make utility is supported since the release of SDE2 1.2 on a PC. It is the
standard GNU make version 3.80 utility compiled for Windows 32. Note that there exists a
GNU make utility compiled for i686-cygwin, which does not correctly interpret VPATH. Do
not use this release. On Unix/Linux GNU make is a standard utility; use version 3.80.

NOTE: SDE2 doesnot work with GNU make 3.81

F.2 Cygwin utility

Additionally, we use the Cygwin toolset version 1.3.3 on a PC. You can download the
newest version from www.cygwin.com. If you need to have some Cygwin executables,
different from the provided ones, submit a CR for this.

Note that in SDE2 1.1.6 we used Cygwin version 1.3.4. However, that version was slow
and therefore we moved back to version 1.3.3.

Different problems have been encountered with the Cygwin toolsets. They were mainly
related to the speed performance under WinNT. The SDE2 team is looking at the usage of
the MKS (www.mks.com) toolset, which performs better (currently on version 8.0). However,
there is no guarantee for backward compatibility. It is not shareware software and thus it
cannot be distributed with SDE2. More information about the alternative toolsets can be
found in SDE2UnixUtilityAnalysis.pdf document.This document is located in the
sde/docs directory.

SDE2 1.2 is faster with respect to SDE2 1.1.6. This is due to the fact that lot of sed and
awk scripts are replaced by GNU make scripts. Some awk and sed scripts still remain, but
they are likely to be replaced in a future SDE2 release.

SDE2 1.5 is faster with respect to SDE2 1.2 because one more sed script is removed, but
the improvement is small. Also, you could speed up your system removing some add-on
features, see Section 5.2.7, Tuning sde directory on page 112.

F.3 Shells

One interesting tip is using a SHELL variable. According to GNU, there is the following
search order for shell utilities:

Appendix F
Make Utilities and Cygwin
User Manual Version 3.8 Sep 29, 2006
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 141 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Make Utilities and Cygwin
1. In the precise place pointed to by the value of SHELL. For example, if the makefile
specifies SHELL = /bin/sh, gmake will look in the directory /bin on the current drive.

2. In the current directory.

3. In each of the directories in the PATH variable, in order.

We recommend setting the SHELL variable to one of the shells.

F.4 Network

An important issue with respect to the Cygwin speed performance is that you should avoid
using network drives if possible. If you have a Cygwin distribution on your network drive,
move it to your local drive.

F.5 Implicit rules

The normal way of specifying rules for GNU make is by using the mechanism of implicit
rules. Usage of implicit rules by the GNU make utility can be suppressed with the -r option.
For example, set this for your build scripts as:
MAKE = gmake -r

or
MAKE = gmake -r --no-print-directory

It is recommended to use this option, because quite often implicit rules are not used by
GNU make. If you suppress them, it speeds up the make process.

However, for some file extensions, rules might be needed; this can be done using suffix
rules defined in the makefile. This is done in the following way:

.SUFFIXES:

.SUFFIXES: .o .c .cpp
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 142 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : SDE2 Structure
What is covered in this appendix?

This appendix provides information about the makefile directory structure of SDE2, and
variables that can be used with the maketarget<_TMBSL>.mk file.

G.1 SDE2 organization

Building a component requires the following information

• Component information

• Source files

• Dependencies on other components

• Project- and configuration-specific information

• The compiler environment (this is a mix of CPU Class and OS class, for example
TriMedia-pSOS suite, or MIPS-WinCE suite)

• The CPU (R3940, tm32, etc.)

• The endianness

• The release type (debug/retail/assert)

• The link type (static/dynamic)

• The location of BSPs, OS files, standard library

The component information is unique for each component and should be part of the
component’s makefile. The component’s makefile can be found in the main directory of
the component, for example, comps/tmComp1/makefile

Appendix G
Concept of SDE2 (makefile)
structure
User Manual Version 3.8 Sep 29, 2006
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 143 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : SDE2 Structure
The configuration-specific information should not be part of the component makefile,
because it makes the component less reusable in another environment. Therefore some
generic makefiles are defined in the sde directory according to the following structure:

Here we describe the information that is contained in these files and directories.

environment.mk – The entry point for component-specific makefiles. This file computes paths
that are configuration class–specific. It sets important makefile variables. It is the first file
you invoke in your component makefile after the component name setting.

common.mk – Used for computing dependencies and defining the rules for making objects
from C/C++/ASM files. Computes the locations of generated files.

makejava.mk – Used for Java compilation. It creates intermediate class file(s) and final JAR
file. The JAR file is placed in <_TMTGTBIUILDROOT>/comps/generated/lib/jar.

divsuffix.mk – Checks whether a valid release type has been chosen and sets the correct
compilation options with respect to _TMTGTREL.

libs.mk – Contains rules to determine all recursively required libraries, DLLs and their
suffixes.

awk directory – Contains the awk scripts used in SDE2.

scripts directory – Contains the build and test scripts for SDE2.

Figure 7-1: SDE directory structure
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 144 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : SDE2 Structure
tmflags directory – Contains the files to generate tmFlags.h, tmFlags.mk and tmFlags.cfg (see
Section 3.3, Standard precompile flags and tmFlags.h file on page 29).

autodoc directory – Contains makefiles for generating documentation from the source
files of a component, see also Appendix D.

cygwin directory – Contains tools required by SDE2 when building on a PC host platform.

The remaining directories (mips_psos, tm_psos, hp_nullos, x86_nt, arm_nullos,
arm_vxworks, x86_ce, mips_ce, etc.) are configuration class–specific directories. For
each configuration class a directory is specified containing three or more makefiles:

• common.mk

• makelib.mk

• maketarget.mk

• maketarget<_TMBSL>.mk

The common.mk file contains the compile and link options for the specific configuration
class. The makelib.mk file contains the rule to archive objects to a library or DLL. The
maketarget<_TMBSL>.mk files contain the rules to link objects of the test application, a set of
libraries (defined by the test application’s makefile), and platform-specific libraries, objects
and settings to an executable. You can have one or more maketarget files.

The sde directory with its makefiles provides functionality that is used by the makefiles of
components. The result is that the makefiles of the components are easy to make,
understand, and use, while the makefiles of the sde directory contain all the complexity.

It is important to realize that the makefiles of the sde directory should be the same across
all NXP Semiconductors (NXP) development sites. The interface of the SDE makefiles to
the component’s makefiles may not be modified, only extended. The extensions must be
implemented in a controlled way, such that the whole NXP community has access to the
latest status of the makefiles of the sde directory. In this way, you can guarantee that
components developed at site A also work at site B. When development sites have new
requirements for the SDE2, they must submit a change request to the MoReUse
SoCDT/LIPP department, see [RULES] MoReUse Rules Document listed in the
Bibliography.

G.2 The maketarget<_TMBSL>.mk files

Within a configuration class (for example mips_psos), different projects may have different
ways to build their executables. Differences are found in the board support package,
linking extra standard libraries (like pna), and so on. For that, development sites can make
their own maketarget<_bsl>.mk file and put it in the sde/<configuration-class> directory
(for example sde/mips_psos/maketarget_newboard.mk). By setting the environment variable
_TMBSL to <_tmbsl> (example _TMBSL=newboard), SDE2 will use this makefile when
executables are built for the corresponding configuration class.

The content of the new maketarget<_bsl>.mk makefile can be based on the content of an
existing maketarget<_bsl>.mk. When makefiles have a lot in common, the common part can
be put in a maketarget_generic.mk makefile, which is included by the maketarget<_TMBSL>.mk.
For an example, see the makefiles of the sde/mips_psos directory.
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 145 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : SDE2 Structure
Table G-1 shows the relevant SDE2 lines/variables for the new makefile.

Table G-1: The SDE2 variables that are relevant for maketarget<bsl>.mk
Variable Description
_SDE_BUILD_TARGET Must equal EXE. This variable is input for

$(DIR_SDE)/$(DIR_CONFIG)/common.mk.The makefile must start with
the definition of this variable

DIR_SDE The path to the sde directory.

DIR_CONFIG The directory containing the makefiles for the current configuration
class.

$(DIR_SDE)/$(DIR_CONFIG)/common.
mk

Location of the configuration class–specific common.mk makefile. This
makefile must be included almost at the beginning of the
maketarget<_bsl>.mk, right behind the definition of
_SDE_BUILD_TARGET

_SDE_DIR_BIN Location of the executable; computed by:
$(DIR_SDE)/$(DIR_CONFIG)/common.mk

TARGET Name of the executable (determined by makefile of executable)

_SDE_OPTIONFILES The exact location and names of files containing the options for the
compiler.

_SDE_OBJECTS The exact location and names of the objects involved in the test
executable.

_SDE_DEP_LIBRARIES The exact location and names of the generic libraries this test
executable depends on. This excludes libraries that are
environment-specific (like pSOS libraries).
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 146 of 167

STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 147 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : PC Lint Support

What is covered in this appendix?

This appendix describes about the PC-Lint support in SDE2.

H.1 Lint Support in SDE2

SDE2 now allows the user to run PC-Lint, a static code analysis tool on all source files of
a particular component. The user needs to install PC-Lint in his host PC and set the fol-
lowing environment variables:

LINTHOME, is set to the location, where PC-Lint has been installed (i.e. lint-nt.exe)

LINTFILE, is set to the configuration file for the pc lint with the .lnt extension
 (eg: CastorSW.lnt)

PC-Lint can be invoked in SDE2 by typing gmake lint, on any component.

Appendix H
(PC)Lint support in SDE2
User Manual Version 3.8 Sep 29, 2006

STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 148 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Adding new Configuration

What is covered in this appendix?

This appendix describes how to add a configuration class.

I.1 Adding a configuration class

Adding a configuration class means adding a new tool set to the SDE2, for example
PalmOS or mips_nullos tool set. Adding a configuration class to a local configuration can be
done by local sites. However, the local site should submit a CR to the SDE2 development
team and they will add it to the SDE2 as user-supplied feature.

Adding a configuration class requires the following steps:

• Identify the configuration class in terms of _TMTGTOSCLASS, _TMTOOLCHAIN and
_TMTGTCPUCLASS. The default value of _TMTOOLCHAIN is undefined and you need to
define it only if you use more than one toolchain.

• Create the sde/< _TMTGTCPUCLASS>_<_TMTGTOSCLASS> directory.

• Copy the common.mk, makelib.mk and maketarget.mk files of the sde/tm_psos directory to
the sde/<_TMTGTCPUCLASS>< _TMTOOLCHAIN>_<_TMTGTOSCLASS> directory and
tune them line by line in such a way that it fits your new tool set. Introduce as few as
possible new environment variables.

• Create an initialization script in the project/sites/blrsdm directory. Take
tm_psos_debug_static_el_tm32_winnt_default.bat as a starting point for this new file.

• Extend the sde/tmflags/tmFlagsMak.mk with new definitions for your tool set.

• Extend the sde/common.mk, search for the block "Configuration check (passive part)"

Appendix I
Adding a Configuration Class
User Manual Version 3.8 Sep 29, 2006

NXP Semiconductors UM SDE2 2.3
Appendix : QAC
What is covered in this appendix?

This appendix contains an overview of the tool QAC, as well as instructions for using QAC
with SDE2.

J.1 QAC overview

QAC is a deep-flow static analysis tool which will increase productivity and improve
quality standards in a C language development environment.

QAC is designed to identify problems in C source code that arise from language
usage that is dangerous, over complex, non-portable, hard to maintain or which
simply diverge from local coding guidelines.It will warn about many issues that are
not reported by compilers or other development tools.

QAC will significantly reduce the time that needs to be spent inconducting
code-reviews and will raise programmer awareness of features of the C language
which are often not fully understood. By drawing attention to problems at an early
stage in the development process, code quality will be improved and the testing cycle
will be shortened.

J.2 QAC and SDE2

SDE2 has an integration for QAC. To use QAC with SDE2 the following environment
variables need to be set

QACBIN - Path to the binary directory of QAC installation

QACPERSONALITIES-The compiler personality represents the characteristics of your
compiler

QACPROFILE-Project profile

J.2.1 Running qac on components

To run qac on a component, following are the commands:

gmake qac

gmake qacref

gmake qacdiff

Appendix J
QAC
User Manual Version 3.8 Sep 29, 2006
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 149 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : QAC
J.2.1.1 gmake qac

To run qac one needs change directory to the component directory and run gmake qac. The
files generated by QAC (or the results) are stored in the following directory

$(_TMTGTBUILDROOT)/comps/<compname>/tmp/$(_SDE_LIB_CONFIGURATION)/qac

J.2.1.2 gmake qacref

The command gmake qacref is to store the results of QAC in a separate directory for further
reference. The location of the directory is determined by the environment variable
QAC_REF_BASE.

J.2.1.3 gmake qacdiff

The command gmake qacdiff is to run qac on the component and also to verify the results
with that of the reference results earlier stored by the command gmake qacref. The
location of the reference directory is determined by the environment variable
QAC_REF_BASE.

In order to run this command “diff” utility needs to be installed on the windows system and
should be in PATH

J.2.2 Running QAC on selected header files

SDE2 has the facility to run QAC on selected header files. To achieve this one needs to
set the variable (environment or makefile variable) QAC_HEADERS.

QAC_HEADERS contains space separated values of the header files on which QAC should
be run. These values can have path of the header file either relative from the existing
directory or absolute path

The files generated by QAC (or the results) are stored in the following directory

$(_TMTGTBUILDROOT)/comps/<compname>/tmp/$(_SDE_LIB_CONFIGURATION)/qac
/headers

.

STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 150 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Eclipse
What is covered in this appendix?

This appendix contains an overview of eclipse, its integration with the SDE2 as a plug-in
and usage of SDE2 with the Eclipse IDE.

K.1 Eclipse overview

Eclipse is an open platform for tool integration built by an open community of tool
providers. It operates with a common public license that provides royalty free source code
and world wide redistribution rights. It provides tool developers with ultimate flexibility and
control over their software technology.

Eclipse is an integrated development environment for anything and for nothing in
particular. The framework is written in Java, which makes it platform independent. It is
available under Windows and Linux

Refer www.eclipse.org for more information.

K.2 Eclipse and SDE2

SDE2 is integrated to Eclipse framework through an independent plug-in. This SDE2
plug-in provides all existing SDE2 user interfaces by means of:

• Context sensitive drop-down menus (on component/application makefiles)

• Main menus for executing SDE2 scripts and setting scripts options

• Toolbar options to build/clean and run last command executed.

SDE2 user can also use all existing features of Eclipse framework like effectively writing
and debugging source codes in classical programming languages (like C/C++, Java),
editors with features like syntax highlighting, code-completion, views to show structure of
code, source code navigation, etc.

K.2.1 Installation of SDE2 and Eclipse plugin

The following packages are required for using SDE2 within the Eclipse framework:

• Eclipse Version 3.1 installation packages are available in
http://www.eclipse.org/downloads/index.php.

Different packages of Eclipse are available for Windows, Linux (x86/Motif), Linux
(x86/GTK 2) and Linux (IA 64/GTK 2)

Note : We recommend the Linux users to use Linux (x86/GTK 2) version of Eclipse installation.

Appendix K
Eclipse Integration
User Manual Version 3.8 Sep 29, 2006
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 151 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Eclipse
• C/C++ IDE development Tool Plug-in (CDT) Version 3.0.0 available in
http://download.eclipse.org/tools/cdt/releases/eclipse3.1/dist/3.0.0/

• It can also be downlaoded from http://www.eclipse.org/downloads/index.php

Different packages of CDT are available for Windows and Linux.

• SDE2 plug-in, released by the SDE2 development team is available on CODS
(http://pww.dtg.sc.philips.com/cods/searchItems.aspx)

This SDE2 plug-in is platform independent and works on Windows and Linux platforms.

K.2.1.1 Installation and working Procedure

4. Download Eclipse Version 3.1 installation packages of the required platform
(Windows/HP/Linux) from the location
http://www.eclipse.org/downloads/index.php.

5. Unzip the package to a directory (for example /eclipse).

6. Download C/C++ Development Tools Plug-in (CDT) Version 3.0.0 of the required
platform(Windows/HP/Linux) from the location
http://download.eclipse.org/tools/cdt/releases/eclipse3.1/dist/3.0.0/

7. Unzip the package to the same directory as in Step 2.

8. Unzip the SDE2 plug-in package, sde2plugin_eclipse_2_3_Beta.tar.gz into the
same directory as given in Steps 2 and 4.

9. You should be able to see the directory structure as shown in Figure K-1.

10. Open a command prompt or unix/linux shell and set SDE2 supported configuration
specific environment variables (run site specific batch files).

11. Change current working directory to \eclipse.

12. Invoke eclipse executable to launch eclipse. Eclipse IDE alongwith SDE2 plug-in
would appear as shown in Figure K-2.

Figure K-1: Directory structure of Sde2_Eclipse Plugin
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 152 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Eclipse
Figure K-2: Eclipse IDE after integration with SDE2 Plug-in

K.2.2 Adding project into Eclipse
1. Launch eclipse IDE as described above.

2. Add your components and applications as a C/C++ project as described below.

a. Select New → Project. Expand C and select Standard Make C Project.

b. In C/Make Project wizard, enter a Project Name. Uncheck “Use Default” , select
the directory that contains the components and applications.

c. Select the Environment tab, and add SDE2 environment variables one by one.

d. Repeat the above steps for as many number of projects as required.

e. Click on Finish.

3. Files and folders relevent to C/C++ projects are displayed as a tree structure.

Note: The user can run a batch file, which has SDE2 environment variables, for any
known configuration before launching the Eclipse IDE. Only the requisite environment
variables that he intends to change/modify, the user can add it in the environment tab.
This avoids the user in entering each and every environment variable.
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 153 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Eclipse
K.2.3 SDE2 menus

K.2.3.1 Context-sensitive menu

Context-sensitive-menu is provided on component/application makefiles. This pop-up
menu appears when user right-clicks on any of the “makefile”. This pop-up menu contains
the following SDE2 commands:

• gmake

• gmake clean

• gmake clean_all

• build_exe

• auto_doc (devdoc and userdoc)

• Other options (Qmore, makelist, lint, QAC)

Figure K-3: Pop up menu of SDE2 Plug-in
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 154 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Eclipse
Figure K-4: SDE2 Pop-up menu options

K.2.3.2 SDE2 main menus

The SDE2 main menu integrated in Eclipse IDE as shown in the Figure K-5

Figure K-5: Main menu options of SDE2 plug-in
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 155 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Eclipse
Figure K-6: SDE2 main menu options

Main menu “SDE2 Build Tool” can be used for the following SDE2 commands.

• Make a component/application

• Build a component/application.

• Clean a component/application.

• Run the last command executed.

• Selecting the options/parameters for all SDE2 perl scripts like build_exe.pl, build.pl
and auto_det.pl.

• Run the script build.pl.

• Run the script auto_det.pl.

• Run the menu “SDE2 Version”, which prints the version of SDE2 being used onto the
console.

User can also use short-cut keys to run the Perl scripts.

K.2.3.3 SDE2 toolbar options

Following toolbar options are provided.

1. Make a component/application

2. Build a component/application.

3. Clean a component/application.

4. Clean all components/application.

5. Run last command executed.

Figure K-7: SDE2 toolbar options
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 156 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Eclipse
Options for changing Release, Linktype and Endianness dynamically.

K.2.3.4 SDE2 help menus

SDE2 getting started, user manual and frequently asked question and answers are
provided in the help-contents within Eclipse IDE. SDE2 help is present at Help → Help
Contents. Click on SDE2 Help to view getting started and user manuals. To view the
FAQs click on the FAQs of SDE2 Plugin.
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 157 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Eclipse
K.2.4 Change of environment variables

The environment variables required for SDE2 can be specified in the Properties of the
Project -> SDE2 Environment property. To change the Environment, select the project and
bring up the properties by right-clicking the project. Click on “SDE2 Environment” property.
There are five tabs to change the Environment settings. They are: Path, Configuration,
Diversity, Generic and Specific. Select one of the respective tabs to change the required
Environment variables.

For eg:

All PATH related variables like _TMROOT, _TMTGTBUILDROOT, _TMPROJECT,

etc are listed in the PATH tab.

Figure K-8: Environment variable setting option
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 158 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Eclipse
K.2.4.1 Changing an Environment variable

Select the environment variable that need to be changed and click edit or double click on
the variable listed. This would popup a new window to change the variable.

Figure K-9: Changing an environment variable
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 159 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Eclipse
K.2.4.2 Selecting an Environment variable not listed

To select the SDE2 environment variables not listed in the any of the tabs click on the
Select button and select the required variables.
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 160 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Eclipse
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 161 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Eclipse
K.2.4.3 Loading Environment from an SDE2 initialisation file

To load the environment variables from SDE2 initialisation files, click on the Load File
Button and select the file to be loaded.

Figure K-10: Changing an environment variable
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 162 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Eclipse
K.2.4.4 Saving environment variables set to a file

To save the environment variables set, click on the “Save to File” Button and select the
name of the file to be saved.

Figure K-11: Saving environment variables set to a file

K.2.5 Display of build output

SDE2 plug-in makes use of the C/C++ Development Toolkit (CDT). CDT is a set of Eclipse
plug-ins that provide C and C++ extensions to the Eclipse workbench. For more
information on CDT, refer www.eclipse.org/cdt.

Eclipse and CDT provide many views which assist the user by providing structured
information about edited/selected resource as below.
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 163 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Eclipse
K.2.5.1 Console view

Console view displays the output of the SDE2 build tool. This view is enabled by choosing
Window → Show View → Other. Select Basic → Console from the Show View dialog.

Figure K-12: Console view when a component is built using context-based drop-down menu
on makefile.

NOTE: Console window would appear in the foreground during the build to show the
progress of the build being carried out.
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 164 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Eclipse
K.2.5.2 Problems view

If you encounter any errors/warnings during a build, they will be displayed in the Problems
view. This view is enabled by choosing Window → Show View → Other. Select Basic →
Problems from the Show View dialog.

The user can view the description of error/warnings, line number and its location. User
can navigate the sources with the indexed syntax errors obtained during SDE2 build, by
double-clicking on the errors as shown in Figure K-13.

Figure K-13: Navigate the sources with the indexed syntax errors obtained during SDE2 build

K.2.5.3 Outline view

Displays the structure of the file currently open in an editor. This view is enabled by
choosing Window → Show View → Other. Select Basic → Outline from the Show View
dialog
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 165 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Glossary
Appendix L
Glossary
User Manual Version 3.8 Sep 29, 2006

Table L-1: Frequently used terms and abbreviations
Term Description

API Application Programmer’s Interface

Application Designed to function as a system. Complex, with handling of multiple cases and
possible errors. Distributed with a collection of components, or as a product.

BSL Board Support Library

BSP Board Support Package

CCB Change Control Board

CDT C/C++ Development Tools

CM Configuration Management

Component A coherent and encapsulated piece of software whose interfaces are well defined
and that was designed keeping reuse in mind, such that it can be deployed
independently.

Configuration Set of options determining what compiler with what settings is used for building
products (libraries/executables) from source code.

Configuration class The combination of CPU-class and operating system, used for building source files.
Each configuration is part of a configuration class.

CMSynergy Telelogic’s Configuration Management Tool (earlier called Continuus)

CR Change Request

Cygwin UNIX environment for Windows

DLL Dynamic Link Library

DVP Digital Video Platform

Examples These are like applications, but they are located with a library. They are designed to
demonstrate usage of API. Examples tend to be simple. Generally distributed with a
component library.

Executable An application designed to be executed on a certain system. It may require other
files. It is part of the final product consisting of applications, examples or tests. By
executable we mean one of those three.

Generic Describes SDE2’s capability of being built for multiple configurations

GUI Graphical User Interface

HVE-SWAB High Volume Electronics SoftWare Architecture Board

Integrated Used to describe SDE2’s capability of including third-party tools at build time

IDE Integrated Development Environment

JAR Java Archive class file

OS Operating System

OSAL Operating System Abstraction Layer
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 166 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Glossary
PDE Plug-in Development Environment

PR Problem Report

Production Building a binary release using SDE2

Reusable Refers to SDE2’s capability of building reusable software

SDE2 SDE (Software Development Environment) consisting of a directory structure,
makefiles and tools

Test Application designed to verify functionality. May be large and tedious. Not generally
distributed with the library.

Table L-1: Frequently used terms and abbreviations <Helv9R>(Cont’d.)
Term Description
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 167 of 167

NXP Semiconductors UM SDE2 2.3
Appendix : Symbols
[]

Symbols
_<CompName>_LOADED 44

deferred 99
immediate 99

_<CompName>_SUFFIX
_a 29, 35, 36, 38, 47, 73, 99
_g 29, 35, 38, 47, 73, 99
_r 47, 99
_t 29, 35, 36, 47, 99

_TMLINKTYPE
dynamic 25
static 25

_TMTGTCPP 34
_TMTGTENDIAN

eb 25
el 25

_TMTGTREL
assert 25, 35, 47, 73
debug 25, 27, 29, 35, 47, 73
retail 25, 27, 35, 47, 73
trace 25, 35, 47, 73

A
Additional Environment Variables

_ARMADSTOOLCHAIN 23
_EPSTOPDF 134
_FLATRELEASEDIR 24, 92
_OEMINCPATH 24, 27
_PDFLATEX 134
_PROJECTROOT 24
_TARGETPLATROOT 24
_TGTCPU 24, 27
_TGTCPUTYPE 24, 27
_TGTOS 24, 27
_TGTPLAT 24, 27
_TGTPROJ 24, 27
_TM_C_ASM_CORREL 92
_TMCLOCKFREQ 82, 91, 100
_TMENDADDR 82, 91, 100
_TMMMIOBASE 82, 91, 100
_TMPSE 24
_TMSTARTADDR 82, 91, 100
_TMTCSHOST 24, 29
_WINCE_HPC_LIB_MIPS 92
_WINCEROOT 24, 92
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 i of [xvii]

NXP Semiconductors UM SDE2 2.3
Appendix : Symbols
[]

CEPBDIR 24
COMPROOT 23
DDK_HOME 24
DFP 23, 92
DIABLIB 23, 92
GCC_BASE 23
GCC_PREFIX 23
GCC_VERSION 23
GCPP 23
GHS 23
GHS_HOME 23, 92
IDLTOOL 64
ISIMIP 23, 92
JAVATOP 88
KEILTOOLSET 23
LM_LICENSE_FILE 23, 92
LOCAL_SYSLIBS 94
PATH 23, 92
PSS_BSP 23, 92
PSS_CONFIG 94
PSS_ROOT 23, 92
QAC_HEADERS 150
QAC_REF_BASE 150
QACBIN 149
QACPERSONALITIES 149
QACPROFILE 149
QMORE_HOME 65
QMOREPARENTDIR 65
QMOREPRODDIR 66
RCC_OPTIONS 23
TCS 24, 92
TMP 92
TMPDIR 92
VCC 24, 92
WIND_BASE 23, 92
WIND_HOST_TYPE 23, 92

Adelante SDK 108
Application 166
Arm-ads Toolse 108
Arm-Realview Toolse 108
Auto-documentation 88, 108
awk 144

B
Binary Release 60, 61, 62
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 ii of [xvii]

NXP Semiconductors UM SDE2 2.3
Appendix : Symbols
[]

BSP diversities 41
Build Flavors 81

C
cadenv 11, 91
circular dependency 84
classpath 118
CMSynergy 166
COMMCTRL 95
COMP_NAME 129
Component 166
Component Diversity 37
Component/Application Makefile Variables

_<CompName>_DIVERSITY 47, 99
_<CompName>_LOADED 99
_<CompName>_REPLACE 47
_<CompName>_SUFFIX 47, 99
C_SOURCES 39, 85, 93
CFG_SOURCES 40, 85, 93
CXX_SOURCES 85, 93
DIR_CONFIG 93
DIR_INCLUDE 51, 52, 83, 86, 93
DIR_LOCAL 34, 35, 55, 85, 93
EXPORTS 42, 50, 87, 94
EXTERNAL_DLLS 83, 86, 93
EXTERNAL_LIBS 83, 86, 93
JAVA_REQUIRES 72, 73, 75, 133
LIB_SUFFIX 29, 93, 98
LIBS 36, 39, 44, 45, 46, 72, 73, 75, 86, 93
LOADED 102
LOCAL_CFLAGS 33, 87, 88, 93, 100
LOCAL_CLASSDEPENDS 122
LOCAL_CXXFLAGS 33, 88, 93
LOCAL_DLLFLAGS 43, 94
LOCAL_INCLUDES 35, 88, 93
LOCAL_JAVACFLAGS 121
LOCAL_JAVAHFLAGS 121
LOCAL_JAVAJARFLAGS 121
LOCAL_LDF 100
LOCAL_LDFLAGS 88, 94
PROVIDED_BY 40, 86, 101
PROVIDED_INTERFACES 94
REL_COMPS_SUFFIX 43, 94
REL_SUFFIX 29, 36, 94, 95
REQUIRED_INTERFACES 94
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 iii of [xvii]

NXP Semiconductors UM SDE2 2.3
Appendix : Symbols
[]

REQUIRES 44, 46, 51, 75, 86, 94, 133
Requires.pl 75
S_SOURCES 85, 94, 124
SDE_IN_SDE 55
SDE_in_SDE 50, 51, 52, 55
TARGET 29, 94, 146
TARGET_AFLAGS 94
TARGET_CFLAGS 34, 94
TARGET_CXXFLAGS 94

Configuration 166
Configuration Class 166
Configurations

8051keil_nullos 18, 23
arm_ce 18, 24, 29, 76
arm_cexec 18, 23
arm_nullos 18, 23, 76
arm_vxworks 18, 23, 27, 76
armads_nucleus 18, 23
armads_nullos 18, 23
armads_ucos 19, 23
armghs_nullos 19, 23
armghs_oscan 19
armgnu_linux 19, 23
armrvds_nullos 19, 23
armrvds_ucos 19, 23
hp_nullos 19, 23, 76
hpncsc_nullos 22, 24, 105
mips_ce 20, 24, 29, 76
mips_nullos 20
mips_psos 11, 18, 20, 23, 42
mips_vxworks 20, 23
mipsghs_integrity 20, 23
mipsghs_nullos 20
mipsgnu_ecos 20
mipsgnu_linux 20, 23
real_mtos 20, 23
real_nullos 21, 23
realsat_nullos 21, 23
tm_psos 11, 21, 24, 76
tmtcs_nullos 21
x86_ce 21, 24, 29, 45, 76
x86_nt 11, 21, 24, 27, 29, 76
x86_vxworks 21, 76, 94, 98
x86ddk_nt 22, 24
x86gnu_linux 22, 23
x86gnu_nullos 22, 24
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 iv of [xvii]

NXP Semiconductors UM SDE2 2.3
Appendix : Symbols
[]

x86ncsc_nullos 22, 24, 105
x86osci_nt 22
x86osci_nullos 22, 24, 105

configurations.txt 5, 71
COREDLL 95
CPUCLASS

8051 95
arm 95
hp 95
mips 95
real 95
tm 95
x86 95

Cygwin 141, 166

D
Developer Studio 24, 108
Diversities 36
DLL 15, 29, 43, 44, 86, 87
DLL Supported Configurations

arm_ce 42
armgnu_linux 42
mips_ce 42
mipsgnu_linux 42
tm_psos 42
x86_ce 42
x86_nt 42
x86gnu_linux 42
x86gnu_nullos 42

Docjet 139
docjet 139
Doxygen 88, 108, 132
DVP2_ROOT_DIR 129
Dynamic Link Libraries 42

E
Eclipse 151, 152
Ecos GNU toolchain 108
EXETYPE:DYNAMIC 69

F
Flat directory structure 2
Flavor 37, 39
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 v of [xvii]

NXP Semiconductors UM SDE2 2.3
Appendix : Symbols
[]

G
gawk 108
gcc 108
Generic Environment Variables

_ECHOMAKELINES 91
_TMBSL 23, 25, 68, 69, 89, 91, 100
_TMDIVERSITY 25, 29, 37, 38, 43, 47, 61, 68, 72, 91, 99, 100
_TMECHO 24, 82, 91, 100
_TMLINKTYPE 25, 68, 69, 91
_TMNESTEDINCLUDE 25, 86, 91
_TMNODEPENDENCIES 25, 81, 91, 100
_TMPROJECT 67, 70, 71, 91, 100, 103, 104
_TMREPORTS 71, 74
_TMROOT 17, 24, 58, 84, 91, 100
_TMSITE 24, 91, 100
_TMTCSHOST 68, 69
_TMTGTAOPTS 88, 90, 91, 100
_TMTGTBUILDROOT 8, 16, 17, 24, 84, 91, 100
_TMTGTCOPTS 33, 88, 90, 91, 100
_TMTGTCOPYGUIDS 64
_TMTGTCOPYLIB 17, 24, 51, 60, 91, 100
_TMTGTCOPYOBJ 25, 60, 91, 100
_TMTGTCPP 91, 95, 100
_TMTGTCPUCLASS 15, 17, 29, 41, 68, 91, 100, 148
_TMTGTCPUTYPE 68, 91, 100
_TMTGTCXXOPTS 33, 88, 90, 91, 100
_TMTGTENDIAN 25, 68, 69, 91, 100
_TMTGTINCLUDES 35, 88, 90, 91, 100
_TMTGTOS 68, 72, 91, 100
_TMTGTOSCLASS 15, 17, 41, 68, 91, 100, 148
_TMTGTREL 25, 29, 47, 61, 68, 69, 72, 73, 91, 100
_TMTGTWARNINGS 36, 92, 100
_TMTOOLCHAIN 17, 68, 91, 100, 148
LOCAL_INCLUDES 100
PATH 25
UNAME 24, 92, 100

gmake 17, 82
gnumake 108
Graphviz 108
GreehHills Toolchain 108
GreenHills Toolchain for INTEGRITY 108
GreenHills Toolchain for osCAN 108

H
html 132, 139
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 vi of [xvii]

NXP Semiconductors UM SDE2 2.3
Appendix : Symbols
[]

I
inc 102
Installation Instructions 107
intfs 82
ISI Diab Data 108

J
JAR 15, 29
jar 17, 118
Java 2
JAVA_BOOTCLASSPATHS 118, 120
JAVA_CLASSES 120
JAVA_CLASSESDIR 121
JAVA_EXTDIRS 118, 120
JAVA_JNICLASSES 120
JAVA_NMICLASSES 120
JAVA_REQUIRES 121
JAVA_SOURCEPATHS 121
JAVATOP 120
JDK 118
jikes 121
JNI 118
jni.h 120
jni_md.h 120

L
Latex 132
LIBS 51
Linux 2
LOCAL_CLASSPATHS 120

M
make 17, 82, 141
Microsoft Platform Builder 26
MoReUse iii
MoReUse Global Files

tmAudioFormats.h 11, 13
tmAvFormats.h 11, 13, 102
tmCompId.h 11, 13, 102
tmNxTypes.h 11, 12
tmSystemFormats.h 11, 12
tmtypes.h 11, 102
tmVideoFormats.h 11, 13
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 vii of [xvii]

NXP Semiconductors UM SDE2 2.3
Appendix : Symbols
[]

N
NDEBUG 33
NMI 118

O
OSAL 166
OSCLASS

ce 97
cexec 97
ecos 97
integrity 97
linux 97
mtos 97
nt 97
nucleus 97
nullos 97
oscan 97
psos 97
ucos 97
vxworks 97

P
p4032 41
Perl 109
pJava 119

R
Recursive make 39
Run time diversity 40

S
SDE_IN_SDE 50
SDE2 Autodocumentation Variables

DOC_AUTHOR 134
DOC_COMP_DIR 134
DOC_COMPACT_RTF 137
DOC_COMPNAME 88, 94, 134
DOC_FILES2COPY 134
DOC_GENERATE_HTML 136
DOC_GENERATE_LATEX 137
DOC_GENERATE_PDF 137
DOC_INPUT 136
DOC_LOGO 134
DOC_MAN_OUTPUT 137
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 viii of [xvii]

NXP Semiconductors UM SDE2 2.3
Appendix : Symbols
[]

DOC_QUIET 135
DOC_SECTIONNUMBER 88, 94
DOC_STATUS 134
DOC_VERSION 134
DOC_WARNINGS 135

SDE2 Cadenv Files
install 11
sde2.hlp 11
sde2.installNotes.txt 11
sde2.rel 11
sde2.releaseNotes.txt 11
sdebuild 11
sdebuild_exe 12
sdedoc 11
sdemake 12

SDE2 Component Specific Files
configurations.txt 67, 68
diversity.mk 27, 37, 39, 88, 99
makefile 99

SDE2 Example Components
comps/phSimpleComp 103
comps/phSimpleComp2 103
comps/phSimpleComp2/tst/tst1 103
comps/tmComp1 101
comps/tmComp1/tst/Tst1 101
comps/tmComp1/tst/Tst2 101
comps/tmComp10 102
comps/tmComp10/tst/Tst1 102
comps/tmComp11 102
comps/tmComp12 102
comps/tmComp13 102
comps/tmComp14 102
comps/tmComp14/tst/Tst1 102
comps/tmComp15/tst/Tst1 102
comps/tmComp16 102
comps/tmComp16/tst/Tst1 102
comps/tmComp17 102
comps/tmComp17/tst/Tst1 103
comps/tmComp2 101
comps/tmComp2/tst/Tst1 101
comps/tmComp3 101
comps/tmComp3/tst/Tst1 101
comps/tmComp4 101
comps/tmComp4/tst/Tst1 101
comps/tmComp5 101
comps/tmComp5/tst/Tst1 101
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 ix of [xvii]

NXP Semiconductors UM SDE2 2.3
Appendix : Symbols
[]

comps/tmComp6 101
comps/tmComp6/tst/Tst1 101
comps/tmComp6/tst/Tst2 101
comps/tmComp7 101
comps/tmComp7/tst/Tst1 102
comps/tmComp8 102
comps/tmComp8/tst/Tst1 102
comps/tmComp9 102
comps/tmComp9/tst/Tst1 102
comps/tmCopmp15 102
comps/tmRealFloat 101
intfs 102

SDE2 Generated Files
*.l files 46
a.opt 124
loc_list.* 57, 58, 59, 75
loc_list.mk 11, 57, 58, 84
loc_list.txt 11, 57, 58, 84
tmFlags.cfg 30, 145
tmFlags.h 15, 29, 30, 33, 34, 145
tmFlags.mk 30, 145

SDE2 Log Files
build_exe_report.log 74
build_script.log 71
build_script_report.log 71

SDE2 Makefile Variables
+= 90
_<CompName>_DIVERSITY 98
_<CompName>_LOADED 98
_<CompName>_SUFFIX 98
__DIR 98
_SDE_ALL_OBJECTS 94
_SDE_AOPTFILE_DEPENDS 93, 124
_SDE_AOPTS 94
_SDE_AOPTS_FILE 94
_SDE_ARSUFFIX 95
_SDE_ASM_LIST 95
_SDE_BIN_REL_OBJ 95
_SDE_BTM 93
_SDE_BUILD_TARGET 146
_SDE_C_LIST 95
_SDE_CE_DLLS 90, 95
_SDE_CLASSDEPENDS 122
_SDE_COMMCTRL 95
_SDE_COPTFILE_DEPENDS 93
_SDE_COPTS 95
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 x of [xvii]

NXP Semiconductors UM SDE2 2.3
Appendix : Symbols
[]

_SDE_COPTS_FILE 95
_SDE_COPYLIST 81
_SDE_COREDLL 95
_SDE_CPP_FILES 95
_SDE_CPUTYPES_8051 95
_SDE_CPUTYPES_arm 95
_SDE_CPUTYPES_hp 95
_SDE_CPUTYPES_mips 95
_SDE_CPUTYPES_real 95
_SDE_CPUTYPES_tm 95
_SDE_CPUTYPES_x86 95
_SDE_CXXOPTFILE_DEPENDS 93
_SDE_CXXOPTS 95
_SDE_CXXOPTS_FILE 95
_SDE_DEBUG_OPTIONS 95
_SDE_DEP_LIBRARIES 146
_SDE_DEP_MAKEFILES 90, 95
_SDE_DEPENDENCIES 90, 95
_SDE_DIR_BIN 95, 146
_SDE_DIR_BIN_EXTPATH 95
_SDE_DIR_CONFIGURATION 95
_SDE_DIR_LIB 95
_SDE_DIR_LIB_EXT 95
_SDE_DIR_LIB_LOCAL 95
_SDE_DIR_REL_TO_LOCAL_ROOT 95
_SDE_DIR_REL_TO_ROOT 95
_SDE_DIR_SED_SCRIPT 95
_SDE_DIRLIB_SUFFIX 95
_SDE_DIVERSITY 96
_SDE_DLL_OPTIONS 43, 90, 94
_SDE_DLL_PREFIX 96
_SDE_DLLTARGETNAME 96
_SDE_ERROR 96
_SDE_EXT_LIBS 96
_SDE_EXTRA_CFLAGS 33, 93
_SDE_EXTRA_CXXFLAGS 33, 93
_SDE_FLAVOR_OPTIONS 96
_SDE_GCC_AOPTIONS 96
_SDE_GCC_COPTIONS 96
_SDE_GCC_CXXOPTIONS 96
_SDE_IDLFLAGS 90, 96
_SDE_IDLVPATH 90, 96
_SDE_IMPORT_DLLS 46, 47, 96, 133
_SDE_IMPORT_LIBS 47, 96, 133
_SDE_IMPORT_REQUIRES 96
_SDE_INCLUDES 96
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 xi of [xvii]

NXP Semiconductors UM SDE2 2.3
Appendix : Symbols
[]

_SDE_INTERFACES 96
_SDE_INTFS_IDL_DIRINC 96
_SDE_INTFS_IDL_SOURCES 96
_SDE_INTFS_IDL_TARGETS 96
_SDE_LBOPTS 96
_SDE_LDOPTS 96
_SDE_LIB_CONFIGURATION 96
_SDE_LIB_PATHS 90, 96
_SDE_LIBC 96
_SDE_LIBRARIES 96
_SDE_LIBS_DIVERSITY 46, 47, 96
_SDE_LIBS_NOSFX 96
_SDE_LINKSTYLE 96
_SDE_LINKTYPE 96
_SDE_LIST_DIR 96
_SDE_LOPTFILE_DEPENDS 93
_SDE_MI_FLAGS 97
_SDE_NCSC_FLAGS 97
_SDE_NCSC_GCC 97
_SDE_NCSC_GXX 97
_SDE_NCSCOPTS 97
_SDE_O 34, 97
_SDE_OBJECTS 51, 52, 90, 146
_SDE_OPTIONFILES 90, 93, 146
_SDE_OSTYPES_ce 97
_SDE_OSTYPES_cexec 97
_SDE_OSTYPES_ecos 97
_SDE_OSTYPES_integrity 97
_SDE_OSTYPES_linux 97
_SDE_OSTYPES_mtos 97
_SDE_OSTYPES_nt 97
_SDE_OSTYPES_nucleus 97
_SDE_OSTYPES_nullos 97
_SDE_OSTYPES_oscan 97
_SDE_OSTYPES_psos 97
_SDE_OSTYPES_ucos 97
_SDE_OSTYPES_vxworks 97
_SDE_PROC_DEFINES 90, 103
_SDE_PROVIDED_INTERFACES 97
_SDE_RECURSE_STATIC_LIBS 97
_SDE_REQUIRED_INTERFACES 97
_SDE_REQUIRED_PATH_DLLS 90, 97
_SDE_REQUIRED_PATH_LIBS 90, 97
_SDE_RGD_H_FILE 97
_SDE_SUPPORTED_CPU_CLASSES 97
_SDE_SUPPORTED_CPUTYPES 97
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 xii of [xvii]

NXP Semiconductors UM SDE2 2.3
Appendix : Symbols
[]

_SDE_SUPPORTED_OS_CLASSES 97
_SDE_SUPPORTED_OSTYPES 97
_SDE_SYSLIBS 94
_SDE_TARGET_SUFFIX 97
_SDE_TCSCPUTYPE 97
_SDE_TCSHOST 97, 98
_SDE_THISDLL 97
_SDE_THISLIB 97
_SDE_TMTGTBUILDROOT 17, 98
_SDE_VERSION 91
_SDE_VXWORKS_SUBDIRS 98
_SDE_WARNING_LEVEL 98
_SDE_WARNINGS 84, 90, 98
AS 98
CC 98
CXX 98
DIR_CONFIG 146
DIR_INTERM 82
DIR_INTERM_EXE 98
DIR_INTERM_LIB 98
DIR_SDE 146
EXTERNAL_DLLS 45
EXTERNAL_LIBS 102
JAVA_COPTS 122
JAVA_DEBUG 122
JAVA_DIR_BUILD 121
JAVA_INCDIR 121
JAVA_JARFILE 121
JAVA_JNIDIR 121
JAVA_NMIDIR 121
JAVA_REL_SUFFIX 121
JAVA_TARGET 121
JAVA_TARGETVERSION 122
JAVAC 121
JAVAH 121
JAVAJAR 121
LB 98
LD 98
PSOS_OBJS 98
PSOSOBJ 90, 98
REL_COMPS_SUFFIX 29
VPATH 90, 141

SDE2 Makefiles
common.mk 97, 144
default_toolchain.mk 17
divsuffix.mk 144
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 xiii of [xvii]

NXP Semiconductors UM SDE2 2.3
Appendix : Symbols
[]

environment.mk 55, 85, 98, 144
libs.mk 144
makejava.mk 144
makelib.mk 40, 97
maketarget 97
maketarget$(_TMBSL).mk 93
maketarget.mk 41
maketarget.mk 25
maketarget.mk 41
maketarget.mk 42
maketarget<_TMBSL>.mk 143
maketarget_dvp1.mk 42
maketarget_generic.mk 41
maketarget_p4032.mk 41
sde/config_check.mk 23
sde/environment.mk 23

SDE2 Project Specific Files
buildlist.txt 11, 67, 68, 71, 91
configurations.txt 11, 67, 70, 91
new_cpu_os_type.mk 103, 104
prjlist.txt 11, 57, 58, 59, 62, 84, 91
project 11

SDE2 Scripts
application_diversity.pl 67, 79
auto_det.pl 66, 75, 81
Build.pl 67
build.pl 66, 69
build_exe.pl 66, 67, 72
findtrailingspaces.pl 67, 80
generate_diversity_mk.pl 67, 79
makefile_template.pl 66, 76
requires.pl 66, 75

SDE2 Targets
_force_assert 36, 73
_force_debug 36, 73
_force_retail 36, 73
_force_trace 36
_sde_copy_objects 81
_sde_libs 46
_sde_print_var 82
_sde_suppress_dlls 45
all 88, 89
clean 72, 84, 154
clean_all 84, 154
clean_lib 84
clean_target 84
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 xiv of [xvii]

NXP Semiconductors UM SDE2 2.3
Appendix : Symbols
[]

configuration 88, 89
devdoc 133
diversity 89, 99
help 84
java 88
lib 88, 89
lint 147
qac 149
qacdiff 149, 150
qacref 149, 150
qmore 65
target 88
userdoc 133

suffix rules 142
sys_conf.h 35
System-C 22

T
Telelogic CMSynergy 115, 126
Thumb mode 27
tm_psos 24
tmFlags.*

TMFL_CPU 32
TMFL_CPU_4KEC 32
TMFL_CPU_8051 32
TMFL_CPU_ARM10 32
TMFL_CPU_ARM1020E 32
TMFL_CPU_ARM1022E 32
TMFL_CPU_ARM1026EJS 32
TMFL_CPU_ARM1156T2FS 32
TMFL_CPU_ARM1156TFS 32
TMFL_CPU_ARM1176JTZS 32
TMFL_CPU_ARM720 32
TMFL_CPU_ARM922T 32
TMFL_CPU_ARM926EJS 32
TMFL_CPU_ARM946 32
TMFL_CPU_ARM966ES 32
TMFL_CPU_ARM968ES 32
TMFL_CPU_IS_8051 30
TMFL_CPU_IS_ARM 30
TMFL_CPU_IS_HP 30
TMFL_CPU_IS_MIPS 30
TMFL_CPU_IS_REAL 30
TMFL_CPU_IS_TM 30
TMFL_CPU_IS_X86 30
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 xv of [xvii]

NXP Semiconductors UM SDE2 2.3
Appendix : Symbols
[]

TMFL_CPU_MIPS32 32
TMFL_CPU_R1910 32
TMFL_CPU_R3900 32
TMFL_CPU_R4000 32
TMFL_CPU_R4450 32
TMFL_CPU_RD16023 32
TMFL_CPU_RD16024 32
TMFL_CPU_RD24120 32
TMFL_CPU_STRONGARM 32
TMFL_CPU_TM3260 32
TMFL_ENDIAN 30, 32
TMFL_ENDIAN_BIG 30, 32
TMFL_ENDIAN_LITTLE 30, 32
TMFL_OS 32
TMFL_OS_BTM 32
TMFL_OS_CE 32
TMFL_OS_CE212 32
TMFL_OS_CE300 32
TMFL_OS_CEXEC 32
TMFL_OS_ECOS 32
TMFL_OS_INTEGRITY 32
TMFL_OS_IS_BTM 30
TMFL_OS_IS_CE 30
TMFL_OS_IS_CEXEC 30
TMFL_OS_IS_ECOS 30
TMFL_OS_IS_INTEGRITY 31
TMFL_OS_IS_LINUX 31
TMFL_OS_IS_MTOS 31
TMFL_OS_IS_NT 31
TMFL_OS_IS_NUCLEUS 31
TMFL_OS_IS_NULLOS 31
TMFL_OS_IS_PSOS 31
TMFL_OS_IS_UCOS 31
TMFL_OS_IS_VXWORKS 31
TMFL_OS_LINUX 32
TMFL_OS_MTOS 32
TMFL_OS_NT 32
TMFL_OS_NT4 32
TMFL_OS_NUCLEUS 32
TMFL_OS_NULLOS 32
TMFL_OS_PSOS 32
TMFL_OS_PSOS200 32
TMFL_OS_PSOS250 32
TMFL_OS_UCOS 32
TMFL_OS_VXWORKS 32
TMFL_REL 33, 35
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 xvi of [xvii]

NXP Semiconductors UM SDE2 2.3
Appendix : Symbols
[]

TMFL_REL_ASSERT 30, 33, 35
TMFL_REL_DEBUG 30, 33, 35
TMFL_REL_RETAIL 30, 33, 35
TMFL_REL_TRACE 30, 33

Tornado 109
Trimedia-pSOS 109

U
Unix 110
User Configurable New CPU/OS Type 103

V
VC++ 126

W
WinCE 26, 109
wince.bat 27
WINCEDEBUG 27

X
-Xdepend 123
STA/SDM/SDE2_2.3/0007 © NXP B.V. 2006 Sep 26. All rights reserved.

User manual Rev. 3.8 — 9/26/06 xvii of [xvii]

	MoReUse / SDE2 2.3
	User Manual Version 3.8
	User Manual Version 3.8
	Sep 29, 2006
	STA/SDM/SDE2_2.3/0007

	Introduction
	1.1 Prerequisites
	1.1.1 Tools and Softwares Required

	1.2 Purpose and Scope
	1.3 Directory Structure
	1.4 SDE2 basic principles

	Tutorial
	2.1 Overview
	2.2 Creating a component
	2.2.1 Obtaining a unique component name
	2.2.2 Creating the directory structure
	2.2.3 Creating the source and header files

	2.3 Creating a makefile
	2.4 Building a component (library)
	2.5 Building an image (executable)

	Reference Manual
	3.1 Common directory structure
	3.1.1 inc directory
	3.1.2 sde directory
	3.1.3 project directory
	3.1.4 install directory
	3.1.5 comps directory
	3.1.6 intfs directory
	3.1.7 apps directory
	3.1.8 Component names
	3.1.9 Interfaces
	3.1.10 Platform-specific source files
	3.1.11 Libraries location
	3.1.12 Executables location

	3.2 Configurations
	3.2.1 Selecting a configuration
	3.2.2 Configuration check
	3.2.2.1 Compilation in a WinCE 3.00 Environment
	3.2.2.2 Compilation in a R.E.A.L. environment
	3.2.2.3 Compilation with VxWorks OS
	3.2.2.4 Building executables for mips_psos

	3.2.3 Identifying the configuration of libraries and executables

	3.3 Standard precompile flags and tmFlags.h file
	3.4 Compile and link options
	3.4.1 Project-wide compile options
	3.4.2 Component-specific compile options
	3.4.3 File-specific compile options
	3.4.4 Link options
	3.4.5 Include directories
	3.4.6 Debug, assert, trace and retail libraries
	3.4.7 Warning levels

	3.5 Diversities
	3.5.1 Component diversity
	3.5.1.1 Extend the makefile with a _TMDIVERSITY selection
	3.5.1.2 Use diversity.mk
	3.5.1.3 Recursive make

	3.5.2 Complex interface diversity
	3.5.3 Run-time diversity
	3.5.4 BSP diversities

	3.6 Dynamic link libraries (DLLs)
	3.6.1 Generation
	3.6.2 DLL generation options
	3.6.3 DLL directory structure
	3.6.4 Usage
	3.6.5 C++ support and DLLs
	3.6.6 Suppressing DLLs

	3.7 Libraries and the LIBS section
	3.7.1 How is the LIBS section used?
	3.7.2 DependsOn relation
	3.7.3 Overriding default diversities and *.l files
	3.7.4 Missing *.l file(s)
	3.7.5 Promotion of the interface
	3.7.6 Replacing the libraries and DLLs

	3.8 SDE_in_SDE
	3.8.1 Example component structure for SDE_in_SDE
	3.8.2 Rules for SDE_in_SDE
	3.8.3 Defining SDE_in_SDE in your makefile
	3.8.4 SDE_in_SDE and gmake clean

	3.9 Multiproject SDE2
	3.9.1 Multiproject implementation in SDE2
	3.9.2 Practical recommendations for using multiproject SDE2

	3.10 Binary release
	3.10.1 Generation
	3.10.1.1 Binary release for libraries and DLLs
	3.10.1.2 Binary release for the object files

	3.10.2 Using a binary release
	3.10.2.1 Using a binary release for libraries and DLLs
	3.10.2.2 Using a binary release for object files
	3.10.2.3 Advantages of a binary release approach

	3.11 IDL support in SDE2
	3.11.1 Interface Definition Laungage (IDL)
	3.11.2 Location of the IDL files
	3.11.3 Usage
	3.11.4 Binary Release of IDL-Guid files

	3.12 Qmore invokation from SDE2
	3.13 SDE2 Perl Scripts
	3.13.1 Perl
	3.13.2 Build scripts overview
	3.13.3 Build.pl
	3.13.3.1 Input of the script
	3.13.3.2 Component configuration files
	3.13.3.3 The overall configurations.txt file
	3.13.3.4 Invoking build.pl
	3.13.3.5 Output of the script

	3.13.4 Build_exe.pl
	3.13.4.1 Two iteration process with build_exe.pl
	3.13.4.2 Mixing debug/assert/retail/trace diversities and build_exe.pl
	3.13.4.3 Output of the script

	3.13.5 Requires.pl
	3.13.6 Auto-detection script (auto_det.pl)
	3.13.7 Makefile Template Script (makefile_template.pl)
	3.13.8 Script to generate diversity.mk file (generate_diversity_mk.pl)
	3.13.9 Script to display the diversity information(application_diversity.pl)
	3.13.10 Script to find trailing white spaces (findtrailingspaces.pl)
	3.13.11 Setting environment variables of SDE2(setenv.bat)
	3.13.11.1 EnvCreate.pl
	3.13.11.2 AutodetExecute.pl

	3.14 Build flavors
	3.14.1 Dependency generation
	3.14.2 Copying objects into the release directory
	3.14.3 Build diagnostics
	3.14.4 Memory image build support
	3.14.5 Debugging with SDE2
	3.14.6 Debugging tools and SDE2
	3.14.7 Using source files outside the component
	3.14.8 User-defined variables
	3.14.9 Third-party software
	3.14.10 Use of inline qualifiers
	3.14.11 Other targets
	3.14.12 SDE2 warning messages
	3.14.12.1 Circular dependencies
	3.14.12.2 The loc_list files

	3.15 Component makefile manual
	3.15.1 Structure
	3.15.1.1 Component name and include environment.mk
	3.15.1.2 C, C++ and ASM source files
	3.15.1.3 REQUIRES section
	3.15.1.4 Recursive closure of REQUIRES section
	3.15.1.5 Third-party software and non default include directories
	3.15.1.6 Libraries and DLLs
	3.15.1.7 EXPORTS variable
	3.15.1.8 Setting the diversity
	3.15.1.9 Local C, C++, LD, and TMTGT Flags
	3.15.1.10 Auto-documentation
	3.15.1.11 Target(s)
	3.15.1.12 Makejava, makelib or maketarget
	3.15.1.13 Different file specific compiler settings

	3.15.2 The += assignment
	3.15.3 Tables of all environmental and makefile variables
	3.15.4 Component diversity.mk
	3.15.5 Reliable development with SDE2
	3.15.6 Tables of all examples included in the product

	3.16 User Configurable New CPU/OS Type
	3.17 New third party toolset integration

	System C support in SDE2
	4.1 Introduction to System C
	4.2 Supported Configurations
	4.2.1 Cadence-NcSc System C support - HW Modeling (x86ncsc_nullos)
	4.2.2 OSCI System C support
	4.2.3 Cadence-NcSc System C support - NxBuilder Support

	Installation and Customization
	5.1 Installation
	5.2 Customization
	5.2.1 Required tools
	5.2.2 Permissions
	5.2.3 Tuning the SDE initialization script
	5.2.4 Tuning linux.mk
	5.2.5 Tuning cygwin.mk
	5.2.6 Tuning prjlist.txt
	5.2.7 Tuning sde directory

	5.3 SDE2 on cadenv
	5.3.1 Installing SDE2 on cadenv
	5.3.2 User specific customizations
	5.3.3 SDE2 cadenv wrapper scripts
	5.3.4 Other software tools that are required in cadenv

	5.4 SDE2 and CMSynergy

	Java Building
	A.1 Quick start
	A.2 Java implementation
	A.2.1 Relevant problem aspects
	A.2.2 Java cross-compilation
	A.2.3 Java compilation class path
	A.2.4 Implementation principles
	A.2.5 Implementation limitations
	A.2.6 Implementation approach
	A.2.7 User-configurable variables
	A.2.8 Internal SDE2 variables

	A.3 javac class and source file search mechanism

	Assembler Support
	B.1 Using assembler source files with SDE2

	Visual Studio Integration
	C.1 Setting up your component's directory structure
	C.2 Starting the component's Visual C++ project
	C.3 Building the DVP2 component from within the Developer Studio
	C.3.1 Customizing MSDEV to call the build scripts
	C.3.1 Error parsing

	C.4 Using code browse information
	C.4.1 Building DVP1 component browse information
	C.4.2 Building DVP2 component browse information
	C.4.3 Using DVP2 component browse information

	Autodocumentation
	D.1 Doxygen overview
	D.2 Creating documentation from the component directory
	D.2.1 User documentation
	D.2.2 Design documentation
	D.2.3 User configurable Auto Documentation variables

	Autodocumentation - Docjet
	E.1 Docjet overview
	E.2 Creating documentation from the component directory

	Make Utilities and Cygwin
	F.1 GNU make utility
	F.2 Cygwin utility
	F.3 Shells
	F.4 Network
	F.5 Implicit rules

	Concept of SDE2 (makefile) structure
	G.1 SDE2 organization
	G.2 The maketarget<_TMBSL>.mk files

	(PC)Lint support in SDE2
	H.1 Lint Support in SDE2

	Adding a Configuration Class
	I.1 Adding a configuration class

	QAC
	J.1 QAC overview
	J.2 QAC and SDE2
	J.2.1 Running qac on components
	J.2.1.1 gmake qac
	J.2.1.2 gmake qacref
	J.2.1.3 gmake qacdiff

	J.2.2 Running QAC on selected header files

	Eclipse Integration
	K.1 Eclipse overview
	K.2 Eclipse and SDE2
	K.2.1 Installation of SDE2 and Eclipse plugin
	K.2.1.1 Installation and working Procedure

	K.2.2 Adding project into Eclipse
	K.2.3 SDE2 menus
	K.2.3.1 Context-sensitive menu
	K.2.3.2 SDE2 main menus
	K.2.3.3 SDE2 toolbar options
	K.2.3.4 SDE2 help menus

	K.2.4 Change of environment variables
	K.2.4.1 Changing an Environment variable
	K.2.4.2 Selecting an Environment variable not listed
	K.2.4.3 Loading Environment from an SDE2 initialisation file
	K.2.4.4 Saving environment variables set to a file

	K.2.5 Display of build output
	K.2.5.1 Console view
	K.2.5.2 Problems view
	K.2.5.3 Outline view

	Glossary

